The Vertical Distribution of Ice-Nucleating Particles over the North China Plain: A Case of Cold Front Passage
<p>The location of observation site (<a href="http://www.google.com/maps" target="_blank">http://www.google.com/maps</a> (accessed on 8 August 2023)).</p> "> Figure 2
<p>Flight trajectories on 23 October 2019 (<b>a</b>) and 25 October 2019 (<b>b</b>).</p> "> Figure 3
<p>Representative images of ice crystals in cloud chamber (<b>a</b>) and identified INP in ESEM system (<b>b</b>).</p> "> Figure 4
<p>Classification schematic of INPs.</p> "> Figure 5
<p>The mean sea level pressure and 1000 hPa wind fields at 2:00 p.m. local time (UTC + 8) on 23 October 2019 (<b>a</b>) and 25 October 2019 (<b>b</b>).</p> "> Figure 6
<p>The vertical distribution of ambient relative humidity (<b>a</b>) and temperature (<b>b</b>) before (red line) and after (blue line) the cold front passage.</p> "> Figure 7
<p>36 h back trajectories calculated at starting heights every 500 m from 0.5 to 5 km for observation periods before (<b>a</b>) and after (<b>b</b>) the cold front passage using HYSPLIT.</p> "> Figure 8
<p>Flight trajectories with concentrations of total particles and particles exceeding 0.5 µm in diameter during the flights before (<b>a</b>,<b>c</b>) and after (<b>b</b>,<b>d</b>) the cold front passage.</p> "> Figure 9
<p>Vertical distribution of INP concentration (RHw = 99%) at activation temperature of −20 °C (<b>a</b>), −23 °C (<b>b</b>), −26 °C (<b>c</b>) and −29 °C (<b>d</b>) before (black dots) and after (red dots) the cold front passage.</p> "> Figure 10
<p>The activated fractions of total particles at different heights before (<b>a</b>) and after (<b>b</b>) the cold front passage. The box represents the interquartile.</p> "> Figure 11
<p>Chemical composition of identified INPs (N = 93) measured by ESEM-EDS before (<b>a</b>) and after (<b>b</b>) the cold front passage.</p> "> Figure 12
<p>Size distribution of identified INPs (N = 93) collected at different heights before and after the cold front passage.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Flight Routes
2.2. Sampling and Measurement of Aerosols
2.3. INP Analysis
2.4. Chemical Analysis
2.5. Back Trajectories of Air Masses
3. Results
3.1. Weather Condition Analysis
3.2. INP Measurements
3.3. Verticlal Profile of INP and Aerosol Concentration
3.4. Chemical Composition of INPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vali, G.; DeMott, P.J.; Möhler, O.; Whale, T.F. Technical Note: A proposal for ice nucleation terminology. Atmos. Chem. Phys. 2015, 15, 10263–10270. [Google Scholar] [CrossRef]
- Lohmann, U.; Lüönd, F.; Mahrt, F. An Introduction to Clouds: From the Microscale to Climate; Cambridge University Press: Cambridge, UK, 2016; pp. 167–182. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation: With an Introduction to Cloud Chemistry and Cloud Electricity; ProQuest: Ringwood, UK, 1997; p. 954. [Google Scholar]
- Marcolli, C. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. 2014, 14, 2071–2104. [Google Scholar]
- Lohmann, U. Aerosol-Cloud Interactions and Their Radiative Forcing, Encyclopedia of Atmospheric Sciences; Elsevier Academic Press: Amsterdam, The Netherlands, 2015; pp. 17–22. [Google Scholar]
- Zhu, J.; Penner, J.E. Radiative forcing of anthropogenic aerosols on cirrus clouds using a hybrid ice nucleation scheme. Atmos. Chem. Phys. 2020, 20, 7801–7827. [Google Scholar] [CrossRef]
- Zhu, J.; Penner, J.E. Indirect Effects of Secondary Organic Aerosol on Cirrus Clouds. J. Geophys. Res. Atmos. 2020, 125, e2019JD032233. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Woodley, W.L. Closing the 50-year circle: From cloud seeding to space and back to climate change through precipitation physics. Meteorol. Monogr. 2003, 51, 59–80. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Burrows, S.M.; Shi, Y. Effects of marine organic aerosols as sources of immersion-mode ice-nucleating particles on high-latitude mixed-phase clouds. Atmos. Chem. Phys. 2021, 21, 2305–2327. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Gu, Y.; Liou, K.-N.; Jiang, J.H.; Fan, J.; Liu, X.; Huang, L.; Yung, Y.L. Ice nucleation by aerosols from anthropogenic pollution. Nat. Geosci. 2019, 12, 602–607. [Google Scholar] [CrossRef]
- Vergara-Temprado, J.; Miltenberger, A.K.; Furtado, K.; Grosvenor, D.P.; Shipway, B.J.; Hill, A.A.; Wilkinson, J.M.; Field, P.R.; Murray, B.J.; Carslaw, K.S. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl. Acad. Sci. USA 2018, 115, 2687–2692. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef]
- DeMott, P.J.; Möhler, O.; Cziczo, D.J.; Hiranuma, N.; Petters, M.D.; Petters, S.S.; Belosi, F.; Bingemer, H.G.; Brooks, S.D.; Budke, C.; et al. The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements. Atmos. Chem. Phys. 2018, 11, 6231–6257. [Google Scholar] [CrossRef]
- Bundke, U.; Nillius, B.; Jaenicke, R.; Wetter, T.; Klein, H.; Bingemer, H. The fast Ice Nucleus chamber FINCH. Atmos. Res. 2008, 90, 180–186. [Google Scholar] [CrossRef]
- Möhler, O.; Field, P.R.; Connolly, P.; Benz, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.; Cotton, R.; Krämer, M.; Mangold, A.; et al. Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys. 2006, 6, 3007–3021. [Google Scholar] [CrossRef]
- Möhler, O.; Adams, M.; Lacher, L.; Vogel, F.; Nadolny, J.; Ullrich, R.; Boffo, C.; Pfeuffer, T.; Hobl, A.; Weiß, M.; et al. The Portable Ice Nucleation Experiment (PINE): A new online instrument for laboratory studies and automated long-term field observations of ice-nucleating particles. Atmos. Meas. Tech. 2021, 14, 1143–1166. [Google Scholar] [CrossRef]
- Rogers, D.C. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res. 1988, 22, 149–181. [Google Scholar] [CrossRef]
- Bingemer, H.; Klein, H.; Ebert, M.; Haunold, W.; Bundke, U.; Herrmann, T.; Kandler, K.; Müller-Ebert, D.; Weinbruch, S.; Judt, A.; et al. Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmos. Chem. Phys. 2012, 12, 857–867. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Su, H.; Shan, Y.; Gao, R. The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber. Atmos. Res. 2015, 153, 200–208. [Google Scholar] [CrossRef]
- Conen, F.; Henne, S.; Morris, C.E.; Alewell, C. Atmospheric ice nucleators active ≥−12 °C can be quantified on PM10 filters. Atmos. Meas. Tech. 2012, 5, 321–327. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Z.; Augustin-Bauditz, S.; Grawe, S.; Hartmann, M.; Pei, X.; Liu, Z.; Ji, D.; Wex, H. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys. 2018, 18, 3523–3539. [Google Scholar] [CrossRef]
- Schneider, J.; Höhler, K.; Heikkilä, P.; Keskinen, J.; Bertozzi, B.; Bogert, P.; Schorr, T.; Umo, N.S.; Vogel, F.; Brasseur, Z.; et al. The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests. Atmos. Chem. Phys. 2021, 21, 3899–3918. [Google Scholar] [CrossRef]
- Rzesanke, D.; Nadolny, J.; Duft, D.; Müller, R.; Kiselev, A.; Leisner, T. On the role of surface charges for homogeneous freezing of supercooled water microdroplets. Phys. Chem. Chem. Phys. 2012, 14, 9359–9363. [Google Scholar] [CrossRef]
- Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S.K.; Borrmann, S. Particle surface area dependence of mineral dust in immersion freezing mode: Investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel. Atmos. Chem. Phys. 2014, 14, 12343–12355. [Google Scholar] [CrossRef]
- Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; et al. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys. 2015, 15, 2489–2518. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Ladino, L.A.; Wex, H.; Boose, Y.; Burkert-Kohn, M.; Cziczo, D.J.; Krämer, M. Overview of Ice Nucleating Particles. Meteorol. Monogr. 2017, 58, 1.1–1.33. [Google Scholar] [CrossRef]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef]
- Murray, B.J.; O’Sullivan, D.; Atkinson, J.D.; Webb, M.E. ChemInform Abstract: Ice Nucleation by Particles Immersed in Supercooled Cloud Droplets. ChemInform 2012, 43, 6519–6554. [Google Scholar] [CrossRef]
- Cornwell, G.C.; McCluskey, C.S.; Levin, E.J.T.; Suski, K.J.; DeMott, P.J.; Kreidenweis, S.M.; Prather, K.A. Direct Online Mass Spectrometry Measurements of Ice Nucleating Particles at a California Coastal Site. J. Geophys. Res. Atmos. 2019, 124, 12157–12172. [Google Scholar] [CrossRef]
- Cziczo, D.J.; Froyd, K.D.; Hoose, C.; Jensen, E.J.; Diao, M.; Zondlo, M.A.; Smith, J.B.; Twohy, C.H.; Murphy, D.M. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 2013, 340, 1320–1324. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Abbatt, J.P.D. Ice nucleation onto Arizona test dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem. A 2010, 114, 935–941. [Google Scholar] [CrossRef]
- Archuleta, C.M.; DeMott, P.J.; Kreidenweis, S.M. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys. 2005, 5, 2617–2634. [Google Scholar] [CrossRef]
- Conen, F.; Rodríguez, S.; Glin, C.H.; Henne, S.; Herrmann, E.; Bukowiecki, N.; Alewell, C. Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus B Chem. Phys. Meteorol. 2022, 67, 25014. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Adams, M.P.; Tarn, M.D.; Harrison, A.D.; Vergara-Temprado, J.; Porter, G.C.E.; Holden, M.A.; Sanchez-Marroquin, A.; Carotenuto, F.; Whale, T.F.; et al. Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe. Sci. Rep. 2018, 8, 13821. [Google Scholar] [CrossRef]
- Wex, H.; Huang, L.; Zhang, W.; Hung, H.; Traversi, R.; Becagli, S.; Sheesley, R.J.; Moffett, C.E.; Barrett, T.E.; Bossi, R.; et al. Annual variability of ice-nucleating particle concentrations at different Arctic locations. Atmos. Chem. Phys. 2019, 19, 5293–5311. [Google Scholar] [CrossRef]
- Gong, X.; Wex, H.; van Pinxteren, M.; Triesch, N.; Fomba, K.W.; Lubitz, J.; Stolle, C.; Robinson, T.-B.; Müller, T.; Herrmann, H.; et al. Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level—Part 2: Ice-nucleating particles in air, cloud and seawater. Atmos. Chem. Phys. 2020, 20, 1451–1468. [Google Scholar] [CrossRef]
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2022, 64, 15598. [Google Scholar] [CrossRef]
- Knopf, D.A.; Alpert, P.A.; Wang, B. The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth Space Chem. 2018, 2, 168–202. [Google Scholar] [CrossRef]
- Phillips, V.T.J.; DeMott, P.J.; Andronache, C.; Pratt, K.A.; Prather, K.A.; Subramanian, R.; Twohy, C. Improvements to an Empirical Parameterization of Heterogeneous Ice Nucleation and Its Comparison with Observations. J. Atmos. Sci. 2013, 70, 378–409. [Google Scholar] [CrossRef]
- Mahrt, F.; Alpert, P.A.; Dou, J.; Grönquist, P.; Arroyo, P.C.; Ammann, M.; Lohmann, U.; Kanji, Z.A. Aging induced changes in ice nucleation activity of combustion aerosol as determined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Environ. Sci. Process. Impacts 2020, 22, 895–907. [Google Scholar] [CrossRef]
- Mahrt, F.; Marcolli, C.; David, R.O.; Grönquist, P.; Barthazy Meier, E.J.; Lohmann, U.; Kanji, Z.A. Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber. Atmos. Chem. Phys. 2018, 18, 13363–13392. [Google Scholar] [CrossRef]
- Jahl, L.G.; Brubaker, T.A.; Polen, M.J.; Jahn, L.G.; Cain, K.P.; Bowers, B.B.; Fahy, W.D.; Graves, S.; Sullivan, R.C. Atmospheric aging enhances the ice nucleation ability of biomass-burning aerosol. Sci. Adv. 2021, 7, eabd3440. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, F.; Luo, G.; Fan, J.; Liu, S. Impacts of long-range-transported mineral dust on summertime convective cloud and precipitation: A case study over the Taiwan region. Atmos. Chem. Phys. 2021, 21, 17433–17451. [Google Scholar] [CrossRef]
- Burrows, S.M.; McCluskey, C.S.; Cornwell, G.; Steinke, I.; Zhang, K.; Zhao, B.; Zawadowicz, M.; Raman, A.; Kulkarni, G.; China, S.; et al. Ice-Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs. Rev. Geophys. 2022, 60, 121. [Google Scholar] [CrossRef]
- Chou, C.; Stetzer, O.; Weingartner, E.; Jurányi, Z.; Kanji, Z.A.; Lohmann, U. Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys. 2011, 11, 4725–4738. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; McMeeking, G.R.; Sullivan, R.C.; Petters, M.D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J.R.; Wang, Z.; et al. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 2015, 15, 393–409. [Google Scholar] [CrossRef]
- Stith, J.L.; Ramanathan, V.; Cooper, W.A.; Roberts, G.C.; DeMott, P.J.; Carmichael, G.; Hatch, C.D.; Adhikary, B.; Twohy, C.H.; Rogers, D.C.; et al. An overview of aircraft observations from the Pacific Dust Experiment campaign. J. Geophys. Res. 2009, 114, 833. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Wang, X.; Gao, R.; Yuan, L.; Chen, K.; Shan, Y. The measurement and parameterization of ice nucleating particles in different backgrounds of China. Atmos. Res. 2016, 181, 72–80. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Chen, K.; Chen, Q.; He, C.; Sun, L. The measurement of ice nucleating particles at Tai’an city in East China. Atmos. Res. 2020, 232, 104684. [Google Scholar] [CrossRef]
- Wgh, S.; Singh, P.; Ghude, S.D.; Safai, P.; Prabhakaran, T.; Kumar, P.P. Study of ice nucleating particles in fog-haze weather at New Delhi, India: A case of polluted environment. Atmos. Res. 2021, 259, 105693. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, P.; Huang, M.; Bi, K.; Schneider, J.; Umo, N.S.; Ullmerich, N.; Höhler, K.; Jing, X.; Xue, H.; et al. Characteristics of ice-nucleating particles in Beijing during spring: A comparison study of measurements between the suburban and a nearby mountain area. Atmos. Environ. 2023, 293, 119451. [Google Scholar] [CrossRef]
- Bi, K.; Ma, X.; Chen, Y.; Fu, S.; Xue, H. The Observation of Ice-Nucleating Particles Active at Temperatures above—15 °C and Its Implication on Ice Formation in Clouds. J. Meteorol. Res. 2018, 32, 734–743. [Google Scholar] [CrossRef]
- Bi, K.; McMeeking, G.R.; Ding, D.P.; Levin, E.J.T.; DeMott, P.J.; Zhao, D.L.; Wang, F.; Liu, Q.; Tian, P.; Ma, X.C.; et al. Measurements of Ice Nucleating Particles in Beijing, China. J. Geophys. Res. Atmos. 2019, 124, 8065–8075. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.; Chen, J.; Chen, J.; Tang, L.; Zhu, W.; Pei, X.; Chen, S.; Tian, P.; Guo, S.; et al. Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions. Atmos. Chem. Phys. 2022, 22, 7539–7556. [Google Scholar] [CrossRef]
- Ren, Y.Z.; Bi, K.; Fu, S.Z.; Tian, P.; Huang, M.Y.; Zhu, R.H.; Xue, H.W. The Relationship of Aerosol Properties and Ice-Nucleating Particle Concentrations in Beijing. J. Geophys. Res. Atmos. 2023, 128, e2022JD037383. [Google Scholar] [CrossRef]
- He, C.; Yin, Y.; Wang, W.; Chen, K.; Mai, R.; Jiang, H.; Zhang, X.; Fang, C. Aircraft observations of ice nucleating particles over the Northern China Plain: Two cases studies. Atmos. Res. 2021, 248, 105242. [Google Scholar] [CrossRef]
- Hobbs, P.V. Clouds: Their Formation, Optical Properties and Effects; Academic Press: Washington, DC, USA, 1981; p. 497. [Google Scholar]
- Rogers, D.C.; DeMott, P.J.; Kreidenweis, S.M. Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res. 2001, 106, 15053–15063. [Google Scholar] [CrossRef]
- Patade, S.; Nagare, B.; Wagh, S.; Maheskumar, R.S.; Prabha, T.V.; Pradeep Kumar, P. Deposition ice nuclei observations over the Indian region during CAIPEEX. Atmos. Res. 2014, 149, 300–314. [Google Scholar] [CrossRef]
- Twohy, C.H.; McMeeking, G.R.; DeMott, P.J.; McCluskey, C.S.; Hill, T.C.J.; Burrows, S.M.; Kulkarni, G.R.; Tanarhte, M.; Kafle, D.N.; Toohey, D.W. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds. Atmos. Chem. Phys. 2016, 16, 8205–8225. [Google Scholar] [CrossRef]
- Conen, F.; Yakutin, M.; Yttri, K.; Hüglin, C. Ice Nucleating Particle Concentrations Increase When Leaves Fall in Autumn. Atmosphere 2017, 8, 202. [Google Scholar] [CrossRef]
- Paul, S.K.; Sharma, S.K.; Selvam, A.M.; Murty, A.S.R. Aircraft observations of hygroscopic and ice-nuclei at a tropical station. J. Rech. Atmos. 1985, 19, 323–327. [Google Scholar]
- Jiang, H.; Yin, Y.; Yang, L.; Yang, S.; Su, H.; Chen, K. The characteristics of atmospheric ice nuclei measured at different altitudes in the Huangshan Mountains in Southeast China. Adv. Atmos. Sci. 2014, 31, 396–406. [Google Scholar] [CrossRef]
- Niu, S.J.; An, X.L.; Chen, Y.; Huang, S.H. 2000: Measurements and analysis of concentrations of atmospheric ice nuclei in the Helanshan area. J. Nanjing Inst. Meteorol. 2000, 6, 294–298. [Google Scholar]
- Zhou, D.; Su, H.; Geng, S.; Wang, Y.; Hong, Y.; Liu, N. Aircraft observation of atmospheric ice nuclei concentration in Liaoning and Shenyang regions. J. Meteorol. Environ. 2018, 34, 133–139. [Google Scholar]
- Wu, J.; Yin, Y.; Chen, K.; He, C.; Jiang, H.; Zheng, B.; Li, B.; Li, Y.; Lv, Y. Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations. Atmosphere 2022, 13, 1447. [Google Scholar] [CrossRef]
- Schrod, J.; Danielczok, A.; Weber, D.; Ebert, M.; Thomson, E.S.; Bingemer, H.G. Reevaluating the Frankfurt isothermal static diffusion chamber for ice nucleation. Atmos. Meas. Tech. 2016, 9, 1313–1324. [Google Scholar] [CrossRef]
- Su, H.; Yin, Y.; Lu, C.; Jiang, H.; Yang, L. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan area. Chin. J. Atmos. Sci. 2014, 38, 386–389. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- López, M.L.; Ávila, E.E. Measurements of natural deposition ice nuclei in Córdoba, Argentina. Atmos. Chem. Phys. 2013, 13, 3111–3119. [Google Scholar] [CrossRef]
- Schrod, J.; Weber, D.; Drücke, J.; Keleshis, C.; Pikridas, M.; Ebert, M.; Cvetković, B.; Nickovic, S.; Marinou, E.; Baars, H.; et al. Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems. Atmos. Chem. Phys. 2017, 17, 4817–4835. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Sullivan, R.C.; Niemand, M.; DeMott, P.J.; Prenni, A.J.; Chou, C.; Saathoff, H.; Möhler, O. Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol. Atmos. Chem. Phys. 2019, 19, 5091–5110. [Google Scholar] [CrossRef]
T (°C) | RHw (%) | RHi (%) |
---|---|---|
−20 | 95 | 115.6 |
97 | 118.0 | |
99 | 120.4 | |
101 | 122.9 | |
−23 | 95 | 119.0 |
97 | 121.5 | |
99 | 124.0 | |
101 | 126.5 | |
−26 | 95 | 122.5 |
97 | 125.1 | |
99 | 127.7 | |
101 | 130.2 | |
−29 | 95 | 126.2 |
97 | 128.8 | |
99 | 131.4 | |
101 | 134.0 |
T and RHw | Minimum NINP (L−1) | Maximum NINP (L−1) | Average NINP (L−1) | ±Standard Deviation of Average (L−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||
−20 °C | 95% | 0.0 | 0.0 | 0.2 | 0.5 | 0.1 | 0.1 | 0.056 | 0.164 |
97% | 0.0 | 0.0 | 0.2 | 0.6 | 0.1 | 0.2 | 0.072 | 0.192 | |
99% | 0.1 | 0.1 | 0.3 | 0.7 | 0.2 | 0.3 | 0.074 | 0.212 | |
101% | 0.1 | 0.2 | 0.3 | 0.9 | 0.3 | 0.4 | 0.084 | 0.242 | |
−23 °C | 95% | 0.1 | 0.1 | 0.4 | 0.6 | 0.2 | 0.2 | 0.082 | 0.166 |
97% | 0.1 | 0.2 | 0.4 | 0.8 | 0.3 | 0.4 | 0.068 | 0.184 | |
99% | 0.3 | 0.3 | 0.8 | 1.0 | 0.5 | 0.6 | 0.134 | 0.244 | |
101% | 0.3 | 0.4 | 1.1 | 1.3 | 0.7 | 0.8 | 0.214 | 0.33 | |
−26 °C | 95% | 0.6 | 0.5 | 1.5 | 1.2 | 1.0 | 0.7 | 0.224 | 0.31 |
97% | 0.8 | 0.4 | 1.8 | 1.3 | 1.3 | 0.9 | 0.302 | 0.316 | |
99% | 1.1 | 0.6 | 2.3 | 1.5 | 1.5 | 1.1 | 0.358 | 0.318 | |
101% | 1.2 | 0.8 | 2.5 | 1.8 | 1.8 | 1.3 | 0.476 | 0.348 | |
−29 °C | 95% | 2.0 | 0.9 | 5.8 | 3.6 | 3.9 | 2.5 | 1.308 | 0.894 |
97% | 2.5 | 1.2 | 6.7 | 3.9 | 4.3 | 2.8 | 1.404 | 0.936 | |
99% | 3.0 | 1.5 | 7.9 | 4.4 | 4.9 | 3.2 | 1.682 | 0.95 | |
101% | 3.6 | 2.0 | 9.2 | 4.9 | 5.7 | 3.7 | 1.922 | 0.928 |
Aerosol Size | NINP before the Cold Front Passage | NINP after the Cold Front Passage | ||
---|---|---|---|---|
R2 | P | R2 | P | |
Total particles | 0.55 | 0.190 | 0.18 | 0.448 |
D > 0.2 μm | 0.47 | 0.164 | 0.06 | 0.689 |
D > 0.3 μm | 0.43 | 0.179 | 0.05 | 0.767 |
D > 0.4 μm | 0.49 | 0.152 | 0.04 | 0.325 |
D > 0.5 μm | 0.49 | 0.189 | 0.03 | 0.599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Yin, Y.; Huang, Y.; Kuang, X.; Cui, Y.; Chen, K.; Jiang, H.; Kiselev, A.; Möhler, O.; Schrod, J. The Vertical Distribution of Ice-Nucleating Particles over the North China Plain: A Case of Cold Front Passage. Remote Sens. 2023, 15, 4989. https://doi.org/10.3390/rs15204989
He C, Yin Y, Huang Y, Kuang X, Cui Y, Chen K, Jiang H, Kiselev A, Möhler O, Schrod J. The Vertical Distribution of Ice-Nucleating Particles over the North China Plain: A Case of Cold Front Passage. Remote Sensing. 2023; 15(20):4989. https://doi.org/10.3390/rs15204989
Chicago/Turabian StyleHe, Chuan, Yan Yin, Yi Huang, Xiang Kuang, Yi Cui, Kui Chen, Hui Jiang, Alexei Kiselev, Ottmar Möhler, and Jann Schrod. 2023. "The Vertical Distribution of Ice-Nucleating Particles over the North China Plain: A Case of Cold Front Passage" Remote Sensing 15, no. 20: 4989. https://doi.org/10.3390/rs15204989