Impact of Land Reclamation on Coastal Water in a Semi-Enclosed Bay
<p>The geographical location of Kinmen with the location of Xiang’an Airport before reclamation of the land.</p> "> Figure 2
<p>Important oyster-growing areas (A–E) in northern Kinmen.</p> "> Figure 3
<p>Progress of the land reclamation project between (<b>a</b>) December 2010 and (<b>b</b>) December 2020 [<a href="#B20-remotesensing-15-00510" class="html-bibr">20</a>].</p> "> Figure 4
<p>Location of water quality sampling sites near the main island of Kinmen.</p> "> Figure 5
<p>Scatter plots of observed and predicted TSS concentrations for (<b>a</b>) calibration and (<b>b</b>) validation (1:1 line provided).</p> "> Figure 6
<p>Scatter plots of observed and predicted DIN concentrations for (<b>a</b>) calibration and (<b>b</b>) validation (1:1 line provided).</p> "> Figure 7
<p>Distribution of TSS concentration on 10 August 2018 derived by the model of <a href="#remotesensing-15-00510-t005" class="html-table">Table 5</a>.</p> "> Figure 8
<p>Distribution of DIN concentration on 10 August 2018 derived by the model of <a href="#remotesensing-15-00510-t006" class="html-table">Table 6</a>.</p> "> Figure 9
<p>Seasonal variation of (<b>a</b>) mean and (<b>b</b>) maximum TSS concentration in the five oyster-growing areas (A–E in <a href="#remotesensing-15-00510-f002" class="html-fig">Figure 2</a>).</p> "> Figure 10
<p>Seasonal variation of (<b>a</b>) mean and (<b>b</b>) maximum DIN concentration in the five oyster-growing areas (A–E in <a href="#remotesensing-15-00510-f002" class="html-fig">Figure 2</a>).</p> "> Figure 10 Cont.
<p>Seasonal variation of (<b>a</b>) mean and (<b>b</b>) maximum DIN concentration in the five oyster-growing areas (A–E in <a href="#remotesensing-15-00510-f002" class="html-fig">Figure 2</a>).</p> "> Figure 11
<p>Monitoring areas used to detect changes in coastline conditions using NDWI as a surrogate.</p> "> Figure 12
<p>Seasonal variation of NDWI in the five monitoring areas (A–E in <a href="#remotesensing-15-00510-f009" class="html-fig">Figure 9</a>).</p> ">
Abstract
:1. Introduction
2. Regional Description
3. Data Availability
4. Methodology and Data Analysis
4.1. Derivation of Predictive Statistical Models
4.2. Temporal Variation of Water Quality
4.3. Temporal Variation of the Coastline Recession
4.4. Factors Impacting Water Quality Constituents and Coast Conditions
5. Discussion
5.1. Overall Trends of TSS Concentration, DIN Concentration, and Coast Conditions
5.2. Factors Influencing TSS Concentration, DIN, and Coast Conditions
5.3. Implications for the Integrated Coastal Management of Semi-Enclosed Coastlines
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Freeman, L.A.; Corbett, D.R.; Fitzgerald, A.M.; Lemley, D.A.; Quigg, A.; Steppe, C.N. Impacts of Urbanization and Development on Estuarine Ecosystems and Water Quality. Estuaries Coasts 2019, 42, 1821–1838. [Google Scholar] [CrossRef]
- Abal, E.G.; Dennison, W.C.; Greenfield, P.F. Managing the Brisbane River and Moreton Bay: An integrated research/management program to reduce impacts on an Australian estuary. Water Sci. Technol. 2001, 43, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Alber, M. A conceptual model of estuarine freshwater inflow management. Estuaries 2002, 25, 1246–1261. [Google Scholar] [CrossRef]
- van Maren, D.S.; Oost, A.P.; Wang, Z.B.; Vos, P.C. The effect of land reclamations and sediment extraction on the suspended sediment concentration in the Ems Estuary. Mar. Geol. 2016, 376, 147–157. [Google Scholar] [CrossRef]
- Mao, X.; Hong, G. Analysis of dredging impact of an airport reclamation on hydrodynamic environment in a semi-enclosed bay with force tide. In Proceedings of the Thirteenth Pacific-Asia Offshore Mechanics Symposium, Jeju, Republic of Korea, 14–17 October 2018. [Google Scholar]
- Yan, H.-K.; Wang, N.; Yu, T.-L.; Fu, Q.; Liang, C. Comparing effects of land reclamation techniques on water pollution and fishery loss for a large-scale offshore airport island in Jinzhou Bay, Bohai Sea, China. Mar. Pollut. Bull. 2013, 71, 29–40. [Google Scholar] [CrossRef]
- Lyu, H.; Song, D.; Zhang, S.; Wu, W.; Bao, X. Compound effect of land reclamation and land-based pollutant input on water quality in Qinzhou Bay, China. Sci. Total Environ. 2022, 826, 154183. [Google Scholar] [CrossRef]
- Zhu, H.; Bing, H.; Yi, H.; Wu, Y.; Sun, Z. Spatial Distribution and Contamination Assessment of Heavy Metals in Surface Sediments of the Caofeidian Adjacent Sea after the Land Reclamation, Bohai Bay. J. Chem. 2018, 2018, 2049353. [Google Scholar] [CrossRef] [Green Version]
- Demir, H.; Otay, E.N.; Work, P.A.; Borekci, O.S. Impacts of Dredging on Shoreline Change. J. Waterw. Port Coast. Ocean Eng. 2004, 130, 170–178. [Google Scholar] [CrossRef]
- Mostafa, Y.E.S. Environmental impacts of dredging and land reclamation at Abu Qir Bay, Egypt. Ain Shams Eng. J. 2012, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, H.; Huang, Q.; Zhang, Y.; Hu, M.; Niu, Y.; Zhu, J. Characterization and environmental impact analysis of sea land reclamation activities in China. Ocean Coast. Manag. 2016, 130, 128–137. [Google Scholar] [CrossRef]
- CNA News. Mainland China Pumping Sea Sand to Build Airport Threatens to Erode Kinmen Coast. 2013. Available online: https://www.cna.com.tw/Proj_County/012/cht_news/201307310482.aspx?page=74 (accessed on 12 October 2022).
- Kinmen News. The Construction of Xiamen Xiang’an Airport Has a Profound Impact on Kinmen. 2017. Available online: https://www.kinmen.gov.tw/News_Content2.aspx?n=98E3CA7358C89100&sms=BF7D6D478B935644&s=99239E94F08960A3&Create=1 (accessed on 12 October 2022).
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinmen County Government. 2022 Kinmen Big Data Analytics. Available online: https://www.kinmen.gov.tw/bigdata/cp.aspx?n=4A61630A0002B0D4 (accessed on 4 October 2022).
- Kinmen News. The Orientation of Kinmen’s Development and the Conception of Industry Forward-looking Planning. 2013. Available online: https://www.kmdn.gov.tw/1117/1271/1276/224453/?cprint=pt (accessed on 5 October 2022).
- Kinmen County Government. Advance Planning for Additional Passenger Terminals on Daidian and Eidian Islands. 2016. Available online: https://ws.kinmen.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvMzA0L3JlbGZpbGUvMC8zMTg1Mi80MTRjNmY3Ni04MmE4LTRjNjgtOTA2Zi1iMzA4NDAyNjk5MmEucGRm&n=RmNoMi3ln7rmnKzos4fmlpnokpDpm4bliIbmnpAucGRm (accessed on 31 October 2022).
- Huang, W.-B. The Impact of Silt Deposition along the Coast of Kinmen on the Oyster Aquaculture Production Area—A Preliminary Analysis. 2014. Available online: https://ws.kinmen.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvMzIzL3JlbGZpbGUvMC8xODc4OS8xMDPlubTluqbph5HploDmsr%2Fmtbfmt6Tms6XmsonnqY3lsI3niaHooKPppIrmrpbnlJ%2FnlKLljYDkuYvlvbHpn7%2FliJ3mraXoqZXmnpDmnJ%2FmnKvloLHlkYoucGRm&n=MTAz5bm05bqm6YeR6ZaA5rK%2F5rW35rek5rOl5rKJ56mN5bCN54mh6KCj6aSK5q6W55Sf55Si5Y2A5LmL5b2x6Z%2B%2F5Yid5q2l6KmV5p6Q5pyf5pyr5aCx5ZGKLnBkZg%3D%3D (accessed on 4 October 2022).
- Google Earth. 24.50°N, 118.35°E, Elevation 24.4 km. 2022. Available online: http://www.google.com/earth/index.html (accessed on 12 October 2022).
- Taiwan Ocean Conservation Administration. iOcean Ocean Conservation Network. 2022. Available online: https://iocean.oca.gov.tw/OCA_OceanConservation/PUBLIC/Marine_WaterQuality_v2.aspx (accessed on 18 September 2022).
- USGS. EarthExplorer. 2022. Available online: https://earthexplorer.usgs.gov/ (accessed on 24 September 2022).
- USGS. Landsat Collection 2 Level-2 Science Products. 2022. Available online: https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products (accessed on 19 September 2022).
- Anyuan Co. Ltd. Aerial Observation of the Land Reclamation Project for Xiangan Airport. 2016. Available online: https://read01.com/zh-tw/6jBR8k.html#.Yy1Y53ZBxPY (accessed on 23 September 2022).
- Tu, M.-C.; Smith, P.; Filippi, A.M. Hybrid forward-selection method-based water-quality estimation via combining Landsat TM, ETM+, and OLI/TIRS images and ancillary environmental data. PLoS ONE 2018, 13, e0201255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurlin, D. Near Infrared-red Models for the Remote Estimation of Chlorophyll-α Concentration in Optically Complex Turbid Productive Waters: From in Situ Measurements to Aerial Imagery. Doctoral Dissertation, University of Nebraska, Lincoln, NE, USA, 2012. [Google Scholar]
- Ocean Data Bank. Water Depth Database. 2022. Available online: https://www.odb.ntu.edu.tw/bathy/ (accessed on 18 September 2022).
- Dayu Tide Table. Dayu Tide Table. 2022. Available online: http://chaoxibiao.net (accessed on 18 September 2022).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction; Springer: New York, NY, USA, 2001. [Google Scholar]
- Moriasi, D.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Kirillin, G.; Engelhardt, C.; Golosov, S. Transient convection in upper lake sediments produced by internal seiching. Geophys. Res. Lett. 2009, 36, L18601. [Google Scholar] [CrossRef]
- Sayler, K. Landsat 4-7 Collection 2 (C2) Level 2 Science Product (L2SP) Guide; EROS: Sioux Falls, SD, USA, 2021. [Google Scholar]
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Ehmann, K.; Kelleher, C.; Condon, L.E. Monitoring turbidity from above: Deploying small unoccupied aerial vehicles to image in-stream turbidity. Hydrol. Process. 2018, 33, 1013–1021. [Google Scholar] [CrossRef]
- Garg, V.; Aggarwal, S.P.; Chauhan, P. Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomat. Nat. Hazards Risk 2020, 11, 1175–1195. [Google Scholar] [CrossRef]
- Ozelkan, E. Water Body Detection Analysis Using NDWI Indices Derived from Landsat-8 OLI. Pol. J. Environ. Stud 2020, 29, 1759–1769. [Google Scholar] [CrossRef]
- Alcaras, E.; Falchi, U.; Parente, C.; Vallario, A. Accuracy evaluation for coastline extraction from Pléiades imagery based on NDWI and IHS pan-sharpening application. Appl. Geomat. 2022, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Hong, H.; Zhou, L.; Hu, J.; Jiang, Y. Numerical modeling of hydrodynamic changes due to coastal reclamation projects in Xiamen Bay, China. Chin. J. Oceanol. Limnol. 2012, 31, 334–344. [Google Scholar] [CrossRef]
- Loftus, G.R. On interpretation of interactions. Mem. Cogn. 2015, 6, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-Q.; Ren, J.-H.; Shen, M.-Y. Survey of Coastal Landscape Resources in Kinmen National Park and Conservation Management Planning. 2016. Available online: https://www.kmnp.gov.tw/resource/conservication/127.pdf (accessed on 4 October 2022).
- Koropitan, A.F.; Purba, M.; Pranowo, W.S.; Rusydi, M. Numerical model of ocean currents, sediment transport, and geomorphology due to reclamation planning in Palu Bay. Adv. Environ. Sci. 2019, 11, 87–96. [Google Scholar]
- Gao, G.D.; Wang, X.H.; Bao, X.W.; Song, D.; Lin, X.P.; Qiao, L.L. The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China. Estuar. Coast. Shelf Sci. 2018, 206, 61–75. [Google Scholar] [CrossRef]
- Zhang, P.; Su, Y.; Liang, S.-K.; Li, K.-Q.; Li, Y.-B.; Wang, X.-L. Assessment of long-term water quality variation affected by high-intensity land-based inputs and land reclamation in JiaozhouBay, China. Ecol. Indic. 2017, 75, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, Y.; Hoitink, A.J.F.; Sassi, M.G.; Zheng, J.; Chen, X.; Zhang, C. Morphological change in the Pearl River Delta, China. Mar. Geol. 2015, 363, 202–219. [Google Scholar] [CrossRef]
Description | Timeframe | |
---|---|---|
1st Phase | 3 | May 2010–April 2016 |
2nd Phase | 7.58 | October 2013–April 2017 |
3rd Phase | 15 | July 2016 *–December 2018 |
Variable Definition | Unit | Symbol |
---|---|---|
Image date—sampling date | Days | |
Water surface temperature | ||
Air temperature | ||
Mean air temperature between image and sampling dates | ||
Difference between the water surface and air temperature | ||
Difference between the water surface and mean air temperature | ||
Instantaneous wind speed | m/s | |
Mean wind speed between image and sampling dates | m/s | |
Instantaneous solar radiation | MJ/m2 | |
Band reflectance | n/a | B1, B2, B3, B4, B5, B7 |
Band ratio | n/a | B3/B1, B2/B1, B4/B1, B5/B1, B7/B1, B3/B2, B4/B2, B5/B2, B7/B2, B4/B3, B5/B3, B7/B3, B5/B4, B7/B4, B7/B5 |
Satellite Name | Image Date | Sampling Date | Water Level at Image Acquisition (m) |
---|---|---|---|
Landsat 7 | 22 February 2006 | 16 February 2006 | 3.53 |
Landsat 7 | 14 August 2008 | 18 August 2008 | 5.25 |
Landsat 5 | 10 November 2008 | 12 November 2008 | 4.95 |
Landsat 7 | 16 May 2010 | 17 May 2010 | 3.83 |
Landsat 7 | 28 February 2011 | 1 March 2011 | 4.39 |
Landsat 7 | 21 May 2012 | 28 May 2012 | 4.61 |
Landsat 7 | 31 October 2013 | 28 October 2013 | 5.13 |
Landsat 7 | 22 January 2015 | 29 January 2015 | 3.06 |
Landsat 7 | 25 January 2016 | 18 January 2016 | 5.10 |
Landsat 7 | 20 August 2016 | 15 August 2016 | 3.08 |
Landsat 7 | 10 August 2018 | 15 August 2018 | 5.31 |
Landsat 7 | 24 March 2020 | 17 March 2020 | 4.44 |
Landsat 7 | 14 May 2021 | 11 May 2021 | 3.75 |
Satellite Name | Image Date | Sampling Date | Water Level at Image Acquisition (m) |
---|---|---|---|
Landsat 5 | 22 February 2006 | 16 February 2006 | 3.53 |
Landsat 7 | 20 February 2008 | 19 February 2008 | 5.15 |
Landsat 5 | 28 October 2009 | 2 November 2009 | 4.42 |
Landsat 7 | 8 November 2010 | 10 November 2010 | 3.87 |
Landsat 5 | 15 August 2011 | 15 August 2011 | 4.32 |
Landsat 7 | 7 August 2017 | 4 August 2017 | 3.98 |
Landsat 7 | 13 August 2019 | 15 August 2019 | 5.28 |
Landsat 7 | 27 March 2021 | 24 March 2021 | 5.36 |
Landsat 7 | 19 September 2021 | 13 September 2021 | 5.58 |
Dependent Variable | ||||||
---|---|---|---|---|---|---|
Intercept | ||||||
p-value | 0.0005 * | 0.039 * | 0.020 * | 0.053 | 0.15 | 0.008 * |
Coefficient | 5.08 | −0.057 | −0.062 | −0.11 | −0.26 | −3.74 |
95% CI | (3.10, 7.06) | (−0.11, −0.0040) | (−0.11, −0.013) | (−0.23, 0.0018) | (−0.64, 0.12) | (−6.16, −1.33) |
VIF | - | 1.22 | 1.57 | 1.13 | 1.69 | 1.46 |
Dependent Variable | |||||
---|---|---|---|---|---|
Intercept | |||||
p-value | 0.0005 * | 0.018 * | 0.12 | 0.012 * | 0.0089 * |
Coefficient | 1.77 | −0.015 | −0.010 | −0.028 | −0.54 |
95% CI | (1.30, 2.24) | (-0.026, −0.0044) | (−0.026, 0.0045) | (−0.046, −0.010) | (-0.86, −0.23) |
VIF | - | 1.32 | 5.03 | 4.38 | 1.19 |
Variable Definition | Unit | Symbol |
---|---|---|
Active disturbed area | ||
Cumulative disturbed area | ||
Tide (categorical: rising/falling at satellite flyover) | n/a | |
Dry days before the image date | days | |
7-day cumulative rainfall depth | mm |
Dependent Variable | |||||||||
---|---|---|---|---|---|---|---|---|---|
Intercept | |||||||||
A (R2 = 0.44) | p-value | <0.0001 * | - | 0.062 | 0.21 | 0.049 * | - | - | <0.0001 * |
Coeff. | 0.14 | - | −0.0023 | −0.018 + | 0.0010 | - | - | −0.0022 + | |
95% CI | (0.094, 0.18) | - | (−0.0048, 0.00012) | (−0.046, 0.010) | (5.52, 0.0021) | - | - | (−0.0032, −0.0011) | |
VIF | - | - | 1.03 | 1.02 | 1.18 | - | - | 1.17 | |
B (R2 = 0.40) | p-value | <0.0001 * | - | 0.091 | 0.33 | 0.027 * | - | - | 0.0007 * |
Coeff. | 0.13 | - | −0.0024 | −0.016 + | 0.0014 | - | - | −0.0021 + | |
95% CI | (0.085, 0.18) | - | (−0.0052, 0.00040) | (−0.049, 0.017) | (0.00016, 0.0026) | - | - | (−0.0033, −0.00094) | |
VIF | - | - | 1.03 | 1.02 | 1.18 | - | - | 1.17 | |
C (R2 = 0.51) | p-value | <0.0001 * | 0.48 | 0.048 * | 0.74 | 0.013 * | 0.035 * | 0.016 * | 0.0005 * |
Coeff. | 0.12 | 0.0015 | −0.0026 | −0.0047 + | 0.0014 | 0.00026 | 0.00016 | −0.0018 + | |
95% CI | (0.070, 0.17) | (−0.0028, 0.0059) | (−0.0052, −2.85 ) | (−0.033, 0.023) | (0.00031, 0.0025) | (1.92 , 0.00051) | (3.08 , 0.00028) | (−0.0028, −0.00084) | |
VIF | - | 1.32 | 1.31 | 1.10 | 1.58 | 1.31 | 1.14 | 1.22 | |
D (R2 = 0.42) | p-value | <0.0001 * | - | 0.17 | 0.99 | 0.097 | - | 0.079 | 0.0004 * |
Coeff. | 0.15 | - | −0.0017 | −0.00025 + | 0.00093 | - | 0.00011 | −0.0019 + | |
95% CI | (0.094, 0.20) | - | (−0.0040, 0.00071) | (−0.028, 0.027) | (−0.00017, 0.0020) | - | (−1.32 , 0.00023) | (−0.0029, −0.00088) | |
VIF | - | - | 1.02 | 1.03 | 1.44 | - | 1.02 | 1.18 | |
E (R2 = 0.22) | p-value | <0.0001 * | - | - | 0.69 | 0.20 | - | - | 0.0085 * |
Coeff. | 0.14 | - | - | −0.0084 + | 0.00098 | - | - | −0.0020 + | |
95% CI | (0.087, 0.18) | - | - | (−0.050, 0.033) | (−0.00052, 0.0025) | - | - | (−0.0035, −0.00055) | |
VIF | - | - | - | 1.00 | 1.17 | - | - | 1.17 |
Dependent Variable | |||||
---|---|---|---|---|---|
Intercept | |||||
A (R2 = 0.44) | p-value | <0.0001 * | 0.95 | 0.10 | 0.019 * |
Coeff. | 1.59 | −0.00042 | 0.0025 | 0.00089 | |
95% CI | (1.48, 1.70) | (−0.013, 0.012) | (−0.00052, 0.0054) | (0.00015, 0.0016) | |
VIF | - | 1.04 | 1.05 | 1.09 | |
B (R2 = 0.40) | p-value | <0.0001 * | 0.80 | 0.084 | 0.020 * |
Coeff. | 1.60 | −0.0016 | 0.0025 | 0.00083 | |
95% CI | (1.50, 1.70) | (−0.014, 0.011) | (−0.00034, 0.0053) | (0.00014, 0.0015) | |
VIF | - | 1.04 | 1.05 | 1.09 | |
C (R2 = 0.51) | p-value | <0.0001 * | 0.69 | 0.052 | 0.042 * |
Coeff. | 1.68 | −0.0029 | 0.0034 | 0.00088 | |
95% CI | (1.55, 1.80) | (−0.018, 0.012) | (− 2.3, 0.0068) | (3.18 , 0.0017) | |
VIF | - | 1.04 | 1.05 | 1.09 | |
D (R2 = 0.42) | p-value | <0.0001 * | 0.70 | 0.039 * | 0.034 * |
Coeff. | 1.67 | −0.0029 | 0.0037 | 0.00092 | |
95% CI | (1.54, 1.80) | (−0.018, 0.012) | (0.00020, 0.0071) | (7.15, 0.0018) | |
VIF | - | 1.04 | 1.05 | 1.10 | |
E (R2 = 0.22) | p-value | <0.0001 * | 0.97 | 0.10 | 0.021 * |
Coeff. | 1.60 | 0.00029 | 0.0027 | 0.00097 | |
95% CI | (1.48, 1.72) | (−0.014, 0.014) | (−0.00056, 0.0060) | (0.00015, 0.0018) | |
VIF | - | 1.04 | 1.05 | 1.09 |
Dep. Variable | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | ||||||||||||
A (R2 = 0.30) | p-value | <0.0001 * | - | - | 0.26 | 0.12 | - | - | - | - | - | 0.0019 * |
Coeff. | 2.88 | - | - | −0.30 + | 0.015 | - | - | - | - | - | −0.031 + | |
95% CI | (2.26, 3.50) | - | - | (−0.83, 0.23) | (−0.0039, 0.035) | - | - | - | - | - | (-0.051, −0.012) | |
VIF | - | - | - | 1.00 | 1.17 | - | - | - | - | - | 1.17 | |
B (R2 = 0.39) | p-value | <0.0001 * | - | - | 0.47 | 0.0031 * | - | - | - | - | - | 0.0043 * |
Coeff. | 2.40 | - | - | −0.14 + | 0.021 | - | - | - | - | - | −0.020 + | |
95% CI | (1.96, 2.85) | - | - | (−0.52, 0.24) | (0.0074, 0.035) | - | - | - | - | - | (−0.034, −0.0067) | |
VIF | - | - | - | 1.00 | 1.17 | - | - | - | - | - | 1.17 | |
C (R2 = 0.18) | p-value | <0.0001 * | - | - | 0.45 | 0.35 | - | - | - | - | - | 0.017 * |
Coeff. | 2.59 | - | - | −0.17 + | 0.0074 | - | - | - | - | - | −0.019 + | |
95% CI | (2.07, 3.10) | - | - | (−0.61, 0.27) | (−0.0084, 0.023) | - | - | - | - | - | (−0.035, −0.0036) | |
VIF | - | - | - | 1.00 | 1.18 | - | - | - | - | - | 1.18 | |
D (R2 = 0.036) | p-value | <0.0001 * | - | - | - | 0.17 | - | - | - | - | - | - |
Coeff. | 2.54 | - | - | - | 0.0097 | - | - | - | - | - | - | |
95% CI | (2.09, 2.99) | - | - | - | (−0.0043, 0.024) | - | - | - | - | - | - | |
VIF | - | - | - | - | 1.00 | - | - | - | - | - | - | |
E (R2 = 0.52) | p-value | <0.0001 * | 0.61 | 0.037 * | 0.038 * | 0.16 | 0.16 | <0.0001 * | 0.034 * | <0.0001 * | 0.0085 * | 0.0232 * |
Coeff. | 3.59 | −0.044 | 0.67 | −0.67 + | −0.021 | −0.0081 | −0.25 | 0.0075 | −0.17+ | −0.0054 | −0.026 + | |
95% CI | (2.60, 4.58) | (−0.22, 0.13) | (0.040, 1.31) | (−1.31, −0.040) | (−0.051, 0.0086) | (−0.019, 0.0032) | (−0.37, −0.13) | (0.00060, 0.014) | (−0.23, −0.096) | (−0.0093, −0.0015) | (−0.049, −0.0038) | |
VIF | - | 3.96 | 1.10 | 1.10 | 2.13 | 2.70 | 1.76 | 1.96 | 1.79 | 2.84 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, M.-c.; Huang, Y.-c. Impact of Land Reclamation on Coastal Water in a Semi-Enclosed Bay. Remote Sens. 2023, 15, 510. https://doi.org/10.3390/rs15020510
Tu M-c, Huang Y-c. Impact of Land Reclamation on Coastal Water in a Semi-Enclosed Bay. Remote Sensing. 2023; 15(2):510. https://doi.org/10.3390/rs15020510
Chicago/Turabian StyleTu, Min-cheng, and Yu-chieh Huang. 2023. "Impact of Land Reclamation on Coastal Water in a Semi-Enclosed Bay" Remote Sensing 15, no. 2: 510. https://doi.org/10.3390/rs15020510
APA StyleTu, M. -c., & Huang, Y. -c. (2023). Impact of Land Reclamation on Coastal Water in a Semi-Enclosed Bay. Remote Sensing, 15(2), 510. https://doi.org/10.3390/rs15020510