SAR Image Classification Using Gated Channel Attention Based Convolutional Neural Network
<p>The structure of LeNet-5.</p> "> Figure 2
<p>The workflow of the proposed GCA-CNN.</p> "> Figure 3
<p>The structure of the proposed GCA-CNN network.</p> "> Figure 4
<p>The explored SAR images and the corresponding groundtruth: (<b>a</b>) The synthetic SAR image; (<b>b</b>) Groundtruth of the synthetic SAR image; (<b>c</b>) The SanFrancisco-Bay SAR image (Radarsat-2); (<b>d</b>) The groundtruth of the SanFrancisco-Bay SAR image; (<b>e</b>) The Flevoland SAR image (Radarsat-2); (<b>f</b>) The groundtruth of the Flevoland SAR image; (<b>g</b>) The Lillestroem TerraSAR-X SAR image; (<b>h</b>) The groundtruth of the Lillestroem TerraSAR-X image.</p> "> Figure 4 Cont.
<p>The explored SAR images and the corresponding groundtruth: (<b>a</b>) The synthetic SAR image; (<b>b</b>) Groundtruth of the synthetic SAR image; (<b>c</b>) The SanFrancisco-Bay SAR image (Radarsat-2); (<b>d</b>) The groundtruth of the SanFrancisco-Bay SAR image; (<b>e</b>) The Flevoland SAR image (Radarsat-2); (<b>f</b>) The groundtruth of the Flevoland SAR image; (<b>g</b>) The Lillestroem TerraSAR-X SAR image; (<b>h</b>) The groundtruth of the Lillestroem TerraSAR-X image.</p> "> Figure 5
<p>Optimizing the Number of feature maps.</p> "> Figure 6
<p>The optimized results of NOL and the NOI.</p> "> Figure 7
<p>The convergence curve of the training error on the synthetic image.</p> "> Figure 8
<p>The classification result maps on the synthetic SAR image: (<b>a</b>) The results of the GCA-CNN; (<b>b</b>) The classification results of the SI-CNN; (<b>c</b>) The results of the OI-CNN; (<b>d</b>) The results of GHFM-CNN; (<b>e</b>) The results of the DBN; (<b>f</b>) The results of the SAE; (<b>g</b>) The results of the SVM.</p> "> Figure 8 Cont.
<p>The classification result maps on the synthetic SAR image: (<b>a</b>) The results of the GCA-CNN; (<b>b</b>) The classification results of the SI-CNN; (<b>c</b>) The results of the OI-CNN; (<b>d</b>) The results of GHFM-CNN; (<b>e</b>) The results of the DBN; (<b>f</b>) The results of the SAE; (<b>g</b>) The results of the SVM.</p> "> Figure 9
<p>The confusion matrices of: (<b>a</b>) GCA-CNN; (<b>b</b>) GHFM-CNN; and the (<b>c</b>) OI-CNN on the synthetic SAR image.</p> "> Figure 10
<p>The converging curve of GCA-CNN and GHFM-CNN on the SanFrancisco-Bay image.</p> "> Figure 11
<p>The confusion matrices of the (<b>a</b>) GCA-CNN, (<b>b</b>) GHFM-CNN and (<b>c</b>) OI-CNN on the SanFransisco-Bay image.</p> "> Figure 12
<p>The classification result maps on the SanFrancisco-Bay SAR image: (<b>a</b>) The classification results of the GCA-CNN; (<b>b</b>) The classification results of the SI-CNN; (<b>c</b>) The classification results of the OI-CNN; (<b>d</b>) The classification results of the GHFM-CNN; (<b>e</b>) The classification results of the DBN; (<b>f</b>) The classification results of the SAE; (<b>g</b>) The classification results of the SVM.</p> "> Figure 12 Cont.
<p>The classification result maps on the SanFrancisco-Bay SAR image: (<b>a</b>) The classification results of the GCA-CNN; (<b>b</b>) The classification results of the SI-CNN; (<b>c</b>) The classification results of the OI-CNN; (<b>d</b>) The classification results of the GHFM-CNN; (<b>e</b>) The classification results of the DBN; (<b>f</b>) The classification results of the SAE; (<b>g</b>) The classification results of the SVM.</p> "> Figure 13
<p>The converging curve of GCA-CNN on the Flevoland image.</p> "> Figure 14
<p>The confusion matrices of (<b>a</b>) GCA-CNN, (<b>b</b>) GHFM-CNN and the (<b>c</b>) OI-CNN.</p> "> Figure 15
<p>The classification result on the Flevoland SAR image: (<b>a</b>) The results of the GCA-CNN; (<b>b</b>) The results of the SI-CNN; (<b>c</b>) The results of the OI-CNN; (<b>d</b>) The results of the GHFM-CNN; (<b>e</b>) The results of the DBN; (<b>f</b>) The results of the SAE; (<b>g</b>) The results of the SVM.</p> "> Figure 15 Cont.
<p>The classification result on the Flevoland SAR image: (<b>a</b>) The results of the GCA-CNN; (<b>b</b>) The results of the SI-CNN; (<b>c</b>) The results of the OI-CNN; (<b>d</b>) The results of the GHFM-CNN; (<b>e</b>) The results of the DBN; (<b>f</b>) The results of the SAE; (<b>g</b>) The results of the SVM.</p> "> Figure 16
<p>The classification results on TerraSAR image: (<b>a</b>) Results of the GCA-CNN; (<b>b</b>) Results of the OI-CNN; (<b>c</b>) Results of the SI-CNN; (<b>d</b>) Results of the GHFM-CNN. (<b>e</b>–<b>g</b>) The confusion matrices of the GCA-CNN, OI-CNN and the GHFM-CNN of TerraSAR image (For better visualization).</p> "> Figure 17
<p>The visualization of image patches and the corresponding feature-maps: (<b>a</b>) The image patch extracted from the original image; (<b>b</b>) The image patch extracted from the smoothed image; (<b>c</b>) a feature-map of the original image patch; (<b>d</b>) a feature-maps of the smoothed image patch; (<b>e</b>) a different feature-map of the original image patch.</p> "> Figure 18
<p>Accuracies of GCA-CNN, OI-CNN and the EW-CNN on three datasets.</p> ">
Abstract
:1. Introduction
- (1)
- An adaptive intrinsic neighborhood weighted based smoothing technique is developed in this paper, in which the counter-balance between smoothing and details keeping is considered;
- (2)
- From the aspect of attention mechanism, the relevance between channels of feature-maps is embedded into the conventional GA module to construct a new kind of feature fusion module called Gated Channel Attention (GCA) module. The fusion performance can be improved comparing the GA by considering the difference in contribution on classification between channels of feature-maps more adequately;
- (3)
- Based on the GCA module, a new Convolution Neural Network called GCA-CNN is constructed. Parameters in the GCA module and the other parts of GCA-CNN can be simultaneously adjusted. Keeping the details and reducing the misclassification can be realized by utilizing the proposed GCA-CNN.
2. Background and Related Works
2.1. Convolutional Neural Network
2.2. Attention Mechanism
3. Proposed Method
3.1. The Super-Pixel and Adaptive Neighborhood Weighting Based Smoothing
3.2. The Dual-Branch Feature Extraction Module
3.3. The GCA Module
3.4. Classification Module and the Training Strategy
4. Experiments and Results
4.1. Datasets and Parameters
4.2. Results on Synthetic Image
4.3. Results on SanFrancisco-Bay SAR Image
4.4. Results on Flevoland SAR Image
4.5. Results on TerraSAR-X SAR Image
4.6. Discussions on the Effectiveness of the Adaptive Fusion
4.7. Discussions on the Computational Complexity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Tan, X.; Li, M.; Zhang, P.; Wu, Y.; Song, W. Complex-valued 3-D convolutional neural network for PolSAR image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1022–1026. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, F.; Jiao, L.; Zhao, P.; Zhang, L. SAR image segmentation based on convolutional-wavelet neural network and markov random field. Pattern Recognit. 2017, 64, 255–267. [Google Scholar] [CrossRef]
- Hou, B.; Kou, H.; Jiao, L. Classification of polarimetric SAR images using multilayer autoencoders and superpixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3072–3081. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Gou, S.; Zhu, D.; Wang, R.; Jiao, L. Polarimetric SAR feature extraction with neighborhood preservation-based deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1456–1466. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Yang, X.; Fang, S.; Ai, J. Region level SAR image classification using deep features and spatial constraints. ISPRS J. Photogramm. Remote Sens. 2020, 163, 36–48. [Google Scholar] [CrossRef]
- Gao, F.; Huang, T.; Wang, J.; Sun, J.; Amir, H.; Yang, E. Dual-branch deep convolution neural network for polarimetric SAR image classification. Appl. Sci. 2017, 7, 447. [Google Scholar] [CrossRef]
- Liang, W.; Wu, Y.; Li, M.; Cao, Y.; Hu, X. High-resolution SAR image classification using multi-scale deep feature fusion and covariance pooling manifold network. Remote Sens. 2021, 13, 328. [Google Scholar] [CrossRef]
- Li, X.; Lei, L.; Sun, Y.; Li, M.; Kuang, G. Collaborative attention-based heterogeneous gated fusion network for land cover classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3829–3845. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, W.; Zhang, D. Stacked sparse autoencoder in PolSAR data classification using local spatial information. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1359–1363. [Google Scholar] [CrossRef]
- Liu, F.; Jiao, L.; Hou, B.; Yang, S. PolSAR image classification based on Wishart DBN and local spatial information. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3292–3308. [Google Scholar] [CrossRef]
- Jie, H.; Li, S.; Gang, S.; Albanie, S. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 2011–2023. [Google Scholar]
- Lécun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. Available online: https://arxiv.org/abs/1502.01852 (accessed on 2 February 2015).
- Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1155–1167. [Google Scholar] [CrossRef]
- Tong, W.; Chen, W.; Han, W.; Li, X.; Wang, L. Channel-attention-based DenseNet network for remote sensing image scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4121–4132. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Luo, Z.; Li, J.; Chen, C. Remote sensing image scene classification based on an enhanced attention module. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1926–1930. [Google Scholar] [CrossRef]
- Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Ma, J. Spectral-spatial attention networks for hyperspectral image classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Han, R.; Song, M.; Liu, C.; Chang, C.I. Feedback Attention-Based Dense CNN for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Ma, F.; Gao, F.; Sun, J.; Zhou, H.; Hussain, A. Attention graph convolution network for image segmentation in big SAR imagery data. Remote Sens. 2019, 11, 2586. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Yang, X.; Jia, L.; Ai, J.; Xia, J. SRAD-CNN for adaptive Synthetic Aperture Radar image classification. Int. J. Remote Sens. 2018, 40, 3461–3485. [Google Scholar]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
Categories | GCA-CNN (%) | GHFM-CNN (%) | SI-CNN (%) | OI-CNN (%) | DBN (%) | SAE (%) | SVM (%) |
---|---|---|---|---|---|---|---|
class 1 | 95.17 | 94.77 | 94.89 | 95.81 | 92.98 | 94.43 | 86.07 |
class 2 | 97.12 | 97.06 | 97.94 | 97.59 | 97.43 | 96.26 | 91.39 |
class 3 | 96.22 | 96.08 | 96.15 | 98.10 | 96.17 | 96.64 | 84.14 |
class 4 | 98.37 | 98.65 | 98.74 | 98.65 | 96.43 | 96.13 | 96.54 |
class 5 | 98.46 | 97.17 | 98.01 | 90.31 | 96.82 | 95.51 | 79.57 |
class 6 | 88.38 | 91.41 | 91.93 | 91.73 | 70.86 | 73.30 | 65.44 |
class 7 | 93.77 | 91.25 | 93.54 | 90.89 | 84.21 | 77.78 | 82.08 |
class 8 | 96.22 | 96.73 | 96.36 | 96.08 | 94.91 | 93.60 | 89.07 |
OA | 95.88 | 95.13 | 94.97 | 94.53 | 90.74 | 90.41 | 85.43 |
Categories | GCA-CNN (%) | GHFM-CNN (%) | CNN (%) Smoothed | CNN (%) Original | DBN (%) | SAE (%) | SVM (%) |
---|---|---|---|---|---|---|---|
built-up 1 | 85.83 | 83.18 | 84.92 | 80.67 | 89.63 | 90.65 | 97.38 |
built-up 2 | 86.19 | 87.29 | 85.94 | 84.67 | 71.36 | 71.26 | 75.15 |
water | 91.35 | 87.86 | 90.43 | 95.43 | 75.88 | 76.33 | 77.64 |
vegetation | 85.21 | 85.74 | 84.34 | 77.73 | 70.84 | 71.35 | 70.43 |
built-up 3 | 48.49 | 38.28 | 43.71 | 45.27 | 5.12 | 4.97 | 5.78 |
OA | 81.38 | 79.56 | 80.63 | 79.33 | 64.61 | 64.97 | 73.1 |
Categories | GCA-CNN (%) | GHFM-CNN (%) | CNN (%) Original | CNN (%) Smoothed | DBN (%) | SAE (%) | SVM (%) |
---|---|---|---|---|---|---|---|
forest | 88.83 | 87.21 | 87.92 | 90.79 | 96.59 | 86.64 | 87.38 |
farmland 1 | 96.83 | 95.73 | 95.94 | 96.47 | 96.18 | 82.33 | 96.87 |
farmland 2 | 34.79 | 33.75 | 33.43 | 33.69 | 29.35 | 10.26 | 32.64 |
urban | 76.63 | 75.12 | 75.34 | 74.46 | 43.61 | 68.53 | 54.73 |
water | 94.77 | 94.38 | 94.41 | 94.26 | 73.46 | 99.02 | 97.33 |
OA | 86.62 | 85.27 | 85.48 | 85.63 | 81.30 | 81.51 | 82.71 |
Categories | OI-CNN (%) | SI-CNN (%) | GCA-CNN (%) | GHFM-CNN (%) |
---|---|---|---|---|
River | 21.21 | 18.01 | 25.76 | 25.69 |
Forest | 81.08 | 83.31 | 83.96 | 83.01 |
Grass | 89.18 | 92.48 | 92.51 | 91.33 |
OA | 79.62 | 81.76 | 82.44 | 82.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.; Jia, L.; Wang, J.; Wang, C. SAR Image Classification Using Gated Channel Attention Based Convolutional Neural Network. Remote Sens. 2023, 15, 362. https://doi.org/10.3390/rs15020362
Zhang A, Jia L, Wang J, Wang C. SAR Image Classification Using Gated Channel Attention Based Convolutional Neural Network. Remote Sensing. 2023; 15(2):362. https://doi.org/10.3390/rs15020362
Chicago/Turabian StyleZhang, Anjun, Lu Jia, Jun Wang, and Chuanjian Wang. 2023. "SAR Image Classification Using Gated Channel Attention Based Convolutional Neural Network" Remote Sensing 15, no. 2: 362. https://doi.org/10.3390/rs15020362
APA StyleZhang, A., Jia, L., Wang, J., & Wang, C. (2023). SAR Image Classification Using Gated Channel Attention Based Convolutional Neural Network. Remote Sensing, 15(2), 362. https://doi.org/10.3390/rs15020362