Irrigation Mapping at Different Spatial Scales: Areal Change with Resolution Explained by Landscape Metrics
"> Figure 1
<p>Global overview of the selected regions including the Sentinel−2 tile name.</p> "> Figure 2
<p>The average number of valid Sentinel-2 observations per pixel for each month in the study regions.</p> "> Figure 3
<p>Mapped irrigated area in the selected Sentinel-2 tiles in China, Sudan and USA at different spatial resolutions. In Sudan and USA, the mapped irrigated area decreases with decreasing spatial resolution while the mapped irrigated area in China is almost independent of resolution.</p> "> Figure 4
<p>Mapped irrigated area as a function of spatial resolution in the three different study sites: <b>A</b> = China, <b>B</b> = Sudan, <b>C</b> = USA. <b>1</b> = 10 m, <b>2</b> = 300 m, <b>3</b> = 1000 m.</p> "> Figure 5
<p>The decrease in irrigated area at coarser resolutions at the study site in Sudan. The left image shows the area classified as irrigated at the resolution of 10 m. The middle shows the same area at 300 m and at the right at 1000 m.</p> "> Figure 6
<p>Irrigated area of 2016 derived from PROBA-V data at 10 arc seconds (approx. 300 m) for the regions of China (<b>left</b>), Sudan (<b>middle</b>) and USA (<b>right</b>).</p> "> Figure 7
<p>Loss of the mapped irrigated area from 10 m to 300 m spatial resolution as a function of the Landscape Shape Index (LSI) in the three regions: Sudan, USA and China.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Resolution Analysis
- The region’s agricultural suitability is low due to rainfall deficit to avoid both confusion between irrigated and rain-fed areas and high cloud cover.
- The region should be dominated by irrigated agriculture.
- The selected regions should cover a broad range of agricultural systems—from subsistence to high-intensity agriculture.
2.2. Scaling Relation at Different Spatial Resolution
3. Results
3.1. Extent of Irrigated Area
3.1.1. Sudan
3.1.2. USA
3.1.3. China
3.2. Comparison of the Sentinel-2 Irrigation Mapping to PROBA-V
3.3. Scaling Relation between Lost Irrigated Area and the Landscape Shape Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT; Food and Agriculture Organization of the United Nations (FAO): Paris, France, 2016. [Google Scholar]
- FAO. Total Withdrawal by Sector; Food and Agriculture Organization of the United Nations (FAO): Paris, France, 2014. [Google Scholar]
- Neumann, K.; Stehfest, E.; Verburg, P.H.; Siebert, S.; Müller, C.; Veldkamp, T. Exploring global irrigation patterns: A multilevel modelling approach. Agric. Syst. 2011, 104, 703–713. [Google Scholar] [CrossRef]
- Puy, A. Irrigated areas grow faster than the population. Ecol. Appl. 2018, 28, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, J.; Zabel, F.; Mauser, W. A global approach to estimate irrigated areas—A comparison between different data and statistics. Hydrol. Earth Syst. Sci. 2018, 22, 1119–1133. [Google Scholar] [CrossRef] [Green Version]
- Strzepek, K.; Boehlert, B. Competition for water for the food system. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2010, 365, 2927–2940. [Google Scholar] [CrossRef] [PubMed]
- Micklin, P. The Aral Sea Disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ma, Z.-G.; Zhao, T.-B.; Li, Z.-H.; Li, Y.-P. Simulation of the regional climatic effect of irrigation over the Yellow River Basin. Atmos. Ocean. Sci. Lett. 2017, 10, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Udall, B.; Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 2017, 53, 2404–2418. [Google Scholar] [CrossRef] [Green Version]
- Maupin, M.A.; Ivahnenko, T.; Bruce, B. Estimates of Water Use and Trends in the Colorado River Basin, Southwestern United States, 1985–2010. In U.S. Geological Survey Scientific Investigations Report 2018-5049; U.S. Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ. 2008, 112, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- Ambika, A.K.; Wardlow, B.; Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 2016, 3, 160118. [Google Scholar] [CrossRef] [Green Version]
- Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sens. 2016, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Abuzar, M.; McAllister, A.; Whitfield, D. Mapping Irrigated Farmlands Using Vegetation and Thermal Thresholds Derived from Landsat and ASTER Data in an Irrigation District of Australia. Photogramm. Eng. Remote Sens. 2015, 81, 229–238. [Google Scholar]
- Lawston, P.M.; Santanello, J.A.; Kumar, S.V. Irrigation Signals Detected From SMAP Soil Moisture Retrievals. Geophys. Res. Lett. 2017, 44, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Puy, A.; Sheikholeslami, R.; Gupta, H.V.; Hall, J.W.; Lankford, B.; Lo Piano, S.; Meier, J.; Pappenberger, F.; Porporato, A.; Vico, G.; et al. The delusive accuracy of global irrigation water withdrawal estimates. Nat. Commun. 2022, 13, 3183. [Google Scholar] [CrossRef]
- Puy, A.; Lankford, B.; Meier, J.; van der Kooij, S.; Saltelli, A. Large variations in global irrigation withdrawals caused by uncertain irrigation efficiencies. Environ. Res. Lett. 2022, 17, 044014. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L. Influence of Resolution in Irrigated Area Mapping and Area Estimation. Photogramm. Eng. Remote Sens. 2009, 75, 1383–1395. [Google Scholar] [CrossRef]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.-A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Hubert-Moy, L.; Buvaneshwari, S.; Sekhar, M.; Ruiz, L.; Bandyopadhyay, S.; Corgne, S. Irrigation History Estimation Using Multitemporal Landsat Satellite Images: Application to an Intensive Groundwater Irrigated Agricultural Watershed in India. Remote Sens. 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-Season Mapping of Irrigated Crops Using Landsat 8 and Sentinel-1 Time Series. Remote Sens. 2019, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Patton, D.R. A Diversity Index for Quantifying Habitat “Edge”. Wildl. Soc. Bull. 1975, 3, 171–173. [Google Scholar]
- Hargis, C.D.; Bissonette, J.A.; David, J.L. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc. Ecol. 1998, 13, 167–186. [Google Scholar] [CrossRef]
- Bogaert, J.; Van Hecke, P.; Salvador-Van Eysenrode, D.; Impens, I. Quantifying habitat edge for nature reserve design. Coenoses 1998, 13, 131–136. [Google Scholar]
- Wang, X.; Blanchet, F.G.; Koper, N.; Tatem, A. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Nowosad, J.; Stepinski, T.F. Information theory as a consistent framework for quantification and classification of landscape patterns. Landsc. Ecol. 2019, 34, 2091–2101. [Google Scholar] [CrossRef] [Green Version]
- Zabel, F.; Putzenlechner, B.; Mauser, W. Global agricultural land resources—A high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 2014, 9, e107522. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Monfreda, C.; Ramankutty, N.; Foley, J. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Sterckx, S.; Benhadj, I.; Duhoux, G.; Livens, S.; Dierckx, W.; Goor, E.; Adriaensen, S.; Heyns, W.; Van Hoof, K.; Strackx, G.; et al. The PROBA-V mission: Image processing and calibration. Int. J. Remote Sens. 2014, 35, 2565–2588. [Google Scholar] [CrossRef]
- Santandrea, S.; Mellab, K.; Vrancken, D.; Versluys, J. The PROBA-V mission: The space segment AU—Francois, Michael. Int. J. Remote Sens. 2014, 35, 2548–2564. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sens. Environ. 2003, 87, 23–41. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
Spatial Resolution | China [km²] | Sudan [km²] | USA [km²] |
---|---|---|---|
1000 m | 2872.95 | 2159.24 | 734.21 |
600 m | 2904.48 | 2416.68 | 903.24 |
300 m | 2908.71 | 2599.83 | 1021.41 |
100 m | 2910.75 | 2832.09 | 1144.47 |
60 m | 2905.35 | 2901.15 | 1233.78 |
40 m | 2905.28 | 2945.68 | 1262.84 |
20 m | 2919.77 | 3009.17 | 1305.00 |
10 m | 2992.01 | 3044.93 | 1401.12 |
Satellite | Spatial Resolution | Sudan | USA | China |
---|---|---|---|---|
PROBA-V | ~300 m | 2671 km2 | 1035 km2 | 2940 km2 |
Sentinel-2300 | 300 m | 2599 km2 | 1021 km2 | 2908 km2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, J.; Mauser, W. Irrigation Mapping at Different Spatial Scales: Areal Change with Resolution Explained by Landscape Metrics. Remote Sens. 2023, 15, 315. https://doi.org/10.3390/rs15020315
Meier J, Mauser W. Irrigation Mapping at Different Spatial Scales: Areal Change with Resolution Explained by Landscape Metrics. Remote Sensing. 2023; 15(2):315. https://doi.org/10.3390/rs15020315
Chicago/Turabian StyleMeier, Jonas, and Wolfram Mauser. 2023. "Irrigation Mapping at Different Spatial Scales: Areal Change with Resolution Explained by Landscape Metrics" Remote Sensing 15, no. 2: 315. https://doi.org/10.3390/rs15020315
APA StyleMeier, J., & Mauser, W. (2023). Irrigation Mapping at Different Spatial Scales: Areal Change with Resolution Explained by Landscape Metrics. Remote Sensing, 15(2), 315. https://doi.org/10.3390/rs15020315