R-MFNet: Analysis of Urban Carbon Stock Change against the Background of Land-Use Change Based on a Residual Multi-Module Fusion Network
"> Figure 1
<p>Location map of Zhengzhou City.</p> "> Figure 2
<p>The overall structure of the network.</p> "> Figure 3
<p>Structure of a residual unit.</p> "> Figure 4
<p>Structure of the dual residual attention module.</p> "> Figure 5
<p>Structure of the R-ASPP module.</p> "> Figure 6
<p>Comparison of model classification effects. (<b>a</b>) True color image of a region in Zhengzhou; (<b>b</b>) Label; (<b>c</b>) 2D-CNN; (<b>d</b>) Resnet; (<b>e</b>) SVM; (<b>f</b>) R-MFNet.</p> "> Figure 7
<p>Contribution ratio of different combinations of modules.</p> "> Figure 8
<p>Land-use maps and elevation map of Zhengzhou City classified by R-MFNet.</p> "> Figure 8 Cont.
<p>Land-use maps and elevation map of Zhengzhou City classified by R-MFNet.</p> "> Figure 9
<p>Change trend of carbon stock in Zhengzhou from 2001 to 2020.</p> "> Figure 10
<p>Distribution of carbon storage proportion of various land-use types in Zhengzhou.</p> "> Figure 11
<p>Distribution of the carbon stock in Zhengzhou.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Source
2.2.1. Land-Use Data
2.2.2. Carbon Density Data
2.3. Methods
2.3.1. Network Structure
2.3.2. Pre-Activated Residual Network Module
2.3.3. Attention Mechanism Module
2.3.4. Residual ASPP Module
2.4. Other Related Methods
2.4.1. Carbon Stock Estimation
2.4.2. Carbon Stock Changes Due to Land-Use Change
3. Results
3.1. Ablation Experiment for the Residual Multi-Module Fusion Network
3.2. Spatial and Temporal Distribution of Land-Use Change
3.3. Land-Use Change Transfer Matrix
3.4. Carbon Stock Changes
3.5. Carbon Stock Changes Due to Land-Use Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B Chem. Phys. Meteorol. 2003, 55, 378. [Google Scholar] [CrossRef]
- Grelle, A.; Hedwall, P.-O.; Strömgren, M.; Håkansson, C.; Bergh, J. From source to sink—Recovery of the carbon balance in young forests. Agric. For. Meteorol. 2023, 330, 109290. [Google Scholar] [CrossRef]
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Meena, V.S.; Mondal, T.; Pandey, B.M.; Mukherjee, A.; Yadav, R.P.; Choudhary, M.; Singh, S.; Bisht, J.K.; Pattanayak, A. Land use changes: Strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India. Geoderma 2018, 321, 69–78. [Google Scholar] [CrossRef]
- Naidoo, L.; van Deventer, H.; Ramoelo, A.; Mathieu, R.; Nondlazi, B.; Gangat, R. Estimating above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland biome of South Africa. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 118–129. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, H.; Zhang, S.; Huang, S.; Zhao, S.; Xu, X.; He, P.; Zhou, W.; Zhao, Y.; Yan, N.; et al. Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios. CATENA 2023, 220, 106708. [Google Scholar] [CrossRef]
- Lindroos, A.-J.; Mäkipää, R.; Merilä, P. Soil carbon stock changes over 21 years in intensively monitored boreal forest stands in Finland. Ecol. Indic. 2022, 144, 109551. [Google Scholar] [CrossRef]
- Tang, L.; Wu, J.; Yu, L.; Bao, Q. Carbon emissions trading scheme exploration in China: A multi-agent-based model. Energy Policy 2015, 81, 152–169. [Google Scholar] [CrossRef]
- Zhengzhou People’s Government. Available online: https://www.zhengzhou.gov.cn/ (accessed on 12 April 2023).
- Zhang, C.; Ju, W.; Chen, J.M.; Wang, X.; Yang, L.; Zheng, G. Disturbance-Induced Reduction of Biomass Carbon Sinks of China’s Forests in Recent Years. Environ. Res. Lett. 2015, 10, 114021. [Google Scholar] [CrossRef]
- Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.; Liu, S.; et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Appl. Geogr. 2012, 34, 111–124. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, X.; Zhao, Y.; Zeng, X.; Xia, L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Wu, X.; Han, H. Dataset of the net primary production on the Qinghai-Tibetan Plateau using a soil water content improved Biome-BGC model. Data Brief. 2019, 27, 104740. [Google Scholar] [CrossRef]
- Liu, T.Y.; Mao, F.J.; Li, X.J.; Xing, L.Q.; Dong, L.F.; Zheng, J.L.; Zhang, M.; Du, H.Q. Spatiotemporal dynamic simulation on aboveground carbon storage of bamboo forest and its influence factors in Zhejiang Province, China. Ying Yong Sheng Tai Xue Bao 2019, 30, 1743–1753. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 044022. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Chang. 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Hou, J.K.; Chen, J.J.; Zhang, K.Q.; Zhou, G.Q.; You, H.T.; Han, X.W. Temporal and Spatial Variation Characteristics of Carbon Storage in the Source Region of the Yellow River Based on InVEST and GeoSoS-FLUS Models and Its Response to Different Future Scenarios. Environ. Sci. 2022, 43, 5253–5262. [Google Scholar]
- Yang, L.W.; Zhao, J.; Zhu, J.T.; Liu, L.; Zhang, P. Spatial—Temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models. Remote Sens. Nat. Resour. 2022, 34, 175–182. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Li, X.-J.; Yang, G.-H. Adaptive Fault-Tolerant Synchronization Control of a Class of Complex Dynamical Networks With General Input Distribution Matrices and Actuator Faults. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Gray, P.C.; Chamorro, D.F.; Ridge, J.T.; Kerner, H.R.; Ury, E.A.; Johnston, D.W. Temporally Generalizable Land Cover Classification: A Recurrent Convolutional Neural Network Unveils Major Coastal Change through Time. Remote Sens. 2021, 13, 3953. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Feng, J.; Liu, L.; Jiao, L. Remote Sensing Image Change Detection Based on Deep Multi-Scale Multi-Attention Siamese Transformer Network. Remote Sens. 2023, 15, 842. [Google Scholar] [CrossRef]
- Yuan, M.; Ren, D.; Feng, Q.; Wang, Z.; Dong, Y.; Lu, F.; Wu, X. MCAFNet: A Multiscale Channel Attention Fusion Network for Semantic Segmentation of Remote Sensing Images. Remote Sens. 2023, 15, 361. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 125–138. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Wu, X.; Yang, W.; Qiang, H.; Lu, B.; Wang, J. R-IMNet: Spatial-Temporal Evolution Analysis of Resource-Exhausted Urban Land Based on Residual-Intelligent Module Network. Remote Sens. 2022, 14, 2185. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Li, G.; Liu, A. A Spectral Feature Based Convolutional Neural Network for Classification of Sea Surface Oil Spill. ISPRS Int. J. Geo-Inf. 2019, 8, 160. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Liu, H.X.; Wang, Z.H.; Lu, P.; Shen, X.K.; Tang, P.F. Improved 3D-CNN-based hyperspectral image classification method. Remote Sens. Nat. Resour. 2021, 13, 2216. [Google Scholar]
- Qiao, X.X.; Shi, W.Z.; Liu, Y.X.; Lin, Y.H.; He, D.Y.; Wang, L.; Wen, P.Y. Remote Sensing Image Scene Classification Based on ResNet and Dual Attention Mechanism. Comput. Syst. Appl. 2021, 30, 243–248. [Google Scholar] [CrossRef]
- Xu, S.J.; Zhang, R.X.; Meng, Y.B.; Liu, G.H.; Han, J.Q. Fusion of fractal geometric features Resnet remote sensing image building segmentation. Opt. Precis. Eng. 2022, 30, 2006–2020. [Google Scholar] [CrossRef]
- Li, A.Q.; Ma, L.; Yu, H.L.; Zhang, H.B. Research on the classification of typical crops in remote sensing images by improved U-Net algorithm. Infrared Laser Eng. 2022, 51, 428–434. [Google Scholar]
- Wang, D.; Guo, Y.; Liu, C.; Tang, P.; Jiao, J.; Kong, W.; Liu, Y.; Kong, D. Identification of High-Value Land for Green Infrastructure in Urban Fringe Areas: A Case Study of Zhengzhou, Henan Province, China. J. Urban. Plann. Dev. 2023, 149, 05023005. [Google Scholar] [CrossRef]
- Wang, C.Y.; Tang, Z.M.; Wu, X.F.; Li, C.C.; Zhang, H.B. Semi-supervised Land Use Classification Based on Particle Swarm Optimization Probabilistic Neural Network. Trans. Chin. Soc. Agric. Mach. 2022, 53, 167–176. [Google Scholar]
- Xu, L.; He, N.P.; Yu, G.R. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). Sci. Data Bank 2019, 4, 90–96. [Google Scholar]
- Zhang, P.P.; Li, Y.H.; Yin, H.R.; Chen, Q.T.; Dong, Q.D.; Zhu, L.Q. Spatio-temporal variation and dynamic simulation of ecosystem carbon storage in the north-south transitional zone of China. J. Nat. Resour. 2022, 37, 1183–1197. [Google Scholar] [CrossRef]
- Li, K. Vegetation and soil carbon storage in China. Sci. China Ser. D 2004, 47, 49. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid. Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Giardina, C.; Ryan, M. Evidence That Decomposition Rates of Organic Carbon in Mineral Soil Do Not Vary with Temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef]
- Chen, G.S.; Yang, Y.S.; Xie, J.S.; Du, Z.X.; Zhang, J. Total below ground carbon allocation in china’s forests. Acta Ecol. Sin. 2007, 27, 5148–5157. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Computer Vision–ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Zhang, F.; Zhan, J.; Zhang, Q.; Yao, L.; Liu, W. Impacts of Land Use/Cover Change on Terrestrial Carbon Stocks in Uganda. Phys. Chem. Earth Parts ABC 2017, 101, 195–203. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Du, L.; Lu, Z.; Li, D. Broodstock breeding behaviour recognition based on Resnet50-LSTM with CBAM attention mechanism. Comput. Electron. Agric. 2022, 202, 107404. [Google Scholar] [CrossRef]
- Han, Y.; Cui, P.; Zhang, Y.; Zhou, R.; Yang, S.; Wang, J. Remote Sensing Sea Ice Image Classification Based on Multilevel Feature Fusion and Residual Network. Math. Probl. Eng. 2021, 2021, e9928351. [Google Scholar] [CrossRef]
- Guo, D.; Xia, Y.; Luo, X. Scene Classification of Remote Sensing Images Based on Saliency Dual Attention Residual Network. IEEE Access 2020, 8, 6344–6357. [Google Scholar] [CrossRef]
- Huan, H.; Li, P.; Zou, N.; Wang, C.; Xie, Y.; Xie, Y.; Xu, D. End-to-End Super-Resolution for Remote-Sensing Images Using an Improved Multi-Scale Residual Network. Remote Sens. 2021, 13, 666. [Google Scholar] [CrossRef]
- Gao, H.; Yang, Y.; Yao, D.; Li, C. Hyperspectral Image Classification With Pre-Activation Residual Attention Network. IEEE Access 2019, 7, 176587–176599. [Google Scholar] [CrossRef]
- Zhengzhou City Policy Information Publicity. Available online: https://public.zhengzhou.gov.cn/ (accessed on 12 April 2023).
- Deng, L.; Liu, S.; Kim, D.G.; Peng, C.; Sweeney, S.; Shangguan, Z. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Chang. 2017, 47, 13–20. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, R.; Zhao, J.; Xia, C.Y.; He, Y.T.; Tang, F.Y. Spatio-temporal evolution and prediction of carbon storage in Beijing’s ecosystem based on Flus and InVEST model. Acta Ecol. Sin. 2022, 42, 9456–9469. [Google Scholar]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef]
- Lin, T.; Yang, M.Z.; Wu, D.F.; Liu, F.; Yang, J.H.; Wang, Y.J. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model- A case study in Guangdong. China Environ. Sci. 2022, 42, 4827–4839. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
Land-Use Type | Remote Sensing Image Characteristics | Interpretive Marker |
---|---|---|
Farmland | Appearing green in the S, N and B bands | Distributed throughout the study area |
Woodland | Appearing red in the N, R and G bands | Mostly in the western mountains |
Grassland | Mainly green and dark green | Sporadic distribution |
Water body | Blue in the N, R and G bands | Linear distribution or point distribution |
Built land | Dark purple in the N, R and G bands | Dotted or facial distribution with strong aggregation |
Other land | Mostly brown in the R, G and B band | Concentrated in the mountainous and bare area |
Total Number of Samples | Training Samples | Validation Samples | |||||||
---|---|---|---|---|---|---|---|---|---|
2001 | 2009 | 2020 | 2001 | 2009 | 2020 | 2001 | 2009 | 2020 | |
Farmland | 22,544 | 26,505 | 39,935 | 6786 | 7934 | 11,920 | 15,758 | 18,571 | 28,015 |
Woodland | 4856 | 15,550 | 11,577 | 1468 | 4742 | 3562 | 3388 | 10,808 | 8015 |
Grassland | 1160 | 1391 | 2036 | 352 | 427 | 723 | 808 | 964 | 1313 |
Water body | 12,544 | 5998 | 19,026 | 3789 | 1785 | 5603 | 8755 | 4213 | 13,423 |
Built land | 54,357 | 39,380 | 72,366 | 16,371 | 11,846 | 22,398 | 37,986 | 27,534 | 49,968 |
Other land | 689 | 543 | 2620 | 228 | 154 | 760 | 461 | 389 | 1860 |
Land-Use Type | ||||
---|---|---|---|---|
Farmland | 16.19 | 76.86 | 103.24 | 9.35 |
Woodland | 40.38 | 110.38 | 151.24 | 13.44 |
Grassland | 33.62 | 82.38 | 95.15 | 6.93 |
Water body | 0.29 | 0 | 0 | 0 |
Built land | 2.38 | 26.19 | 0 | 0 |
Other land | 1.24 | 0 | 20.57 | 0 |
SVM * | 2D-CNN | ResNet | R-MFNet | |
---|---|---|---|---|
Water body | 90.23 a | 84.53 | 92.94 | 96.61 |
Built land Farmland | 94.44 83.76 | 98.56 96.89 | 98.16 98.46 | 98.98 99.64 |
OA/% | 89.12 | 95.23 | 97.86 | 99.19 |
Kappa | 0.87 | 0.93 | 0.96 | 0.98 |
2001 | 2009 | 2020 | |
---|---|---|---|
OA/% | 95.54 | 98.69 | 98.43 |
Kappa | 0.94 | 0.97 | 0.98 |
1D-CNN | U-net | HybirdSN | R-MFNet | |
---|---|---|---|---|
Farmland | 92.27 | 93.66 | 96.05 | 98.03 |
Woodland | 95.77 | 97.23 | 99.23 | 100.00 |
Grassland | 90.11 | 93.23 | 93.09 | 96.70 |
Water body | 92.94 | 90.23 | 91.31 | 96.61 |
Built land | 98.46 | 97.49 | 99.47 | 99.64 |
Other land | 97.23 | 95.23 | 95.76 | 98.73 |
OA/% | 93.13 | 95.08 | 96.47 | 98.87 |
Kappa | 0.92 | 0.94 | 0.95 | 0.98 |
Module Combination Method | (a) | (b) | OA/% | Kappa |
---|---|---|---|---|
(1) | √ | √ | 99.82 | 0.9947 |
(2) | × | √ | 98.36 | 0.9809 |
(3) | √ | × | 97.11 | 0.9749 |
(4) | × | × | 96.72 | 0.9531 |
2001 | 2009 | 2020 | Amount of Change | Dynamics/% | |||
---|---|---|---|---|---|---|---|
2001–2009 | 2009–2020 | 2001–2009 | 2009–2020 | ||||
Water body | 107.78 | 197.95 | 117.30 | 90.17 | −80.65 | 10.46% | −3.70% |
Farmland | 5681.03 | 5768.60 | 4579.31 | 87.57 | −1189.29 | 0.19% | −1.87% |
Woodland | 390.55 | 610.43 | 569.88 | 219.88 | −40.55 | 7.04% | −0.60% |
Grassland | 132.36 | 157.52 | 109.00 | 25.16 | −48.52 | 2.38% | −2.80% |
Built land | 1272.78 | 838.54 | 2208.94 | −434.24 | 1370.40 | −4.26% | 14.86% |
Other land | 0.54 | 2.46 | 0.85 | 1.92 | −1.61 | 44.44% | −5.95% |
Water Body | Farm- Land | Woodland | Grassland | Built Land | Other Land | Roll-Out Total | Contribution Rate of Transfer Out | |
---|---|---|---|---|---|---|---|---|
Water body | 47.59 | 40.04 | 0.23 | 0.14 | 19.74 | 0.02 | 60.18 | 4.31% |
Farmland | 43.64 | 4471.34 | 179.30 | 40.21 | 946.48 | 0.05 | 1209.69 | 86.61% |
Woodland | 0.02 | 15.39 | 369.18 | 2.52 | 3.44 | 0.00 | 21.38 | 1.53% |
Grassland | 0.04 | 40.33 | 21.15 | 65.66 | 5.18 | 0.00 | 66.71 | 4.78% |
Built land | 26.00 | 12.21 | 0.01 | 0.46 | 1234.09 | 0.01 | 38.69 | 2.77% |
Other land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00% |
Roll-in total | 69.70 | 107.97 | 200.70 | 43.34 | 974.85 | 0.09 | 1396.65 | - |
Contribution rate of transfer in | 4.99% | 7.73% | 14.37% | 3.10% | 69.80% | 0.01% | - | - |
Land-Use Change | Area of Change | Proportion of Change Area | Carbon Stock Change/t | Subtotal of Carbon Storage | ||||
---|---|---|---|---|---|---|---|---|
Roll Out | Roll in | Increase | Decrease | Increase | Decrease | |||
Water body | Farmland | 4004.19 | 4.31% | 205.35 | - | 8.22 × | - | 8.89 × |
Woodland | 23.31 | 315.15 | - | 7.35 × | - | |||
Grassland | 13.95 | 217.79 | - | 3.04 × | - | |||
Built land | 1974.15 | 28.28 | - | 5.58 × | - | |||
Other land | 2.52 | 21.52 | - | 5.40 × | - | |||
Farmland | Water body | 4363.83 | 86.61% | - | −205.35 | - | 8.96 × | −1.56 × |
Woodland | 17,930.43 | 109.8 | - | 1.97 × | - | |||
Grassland | 4021.2 | 12.44 | - | 5.00 × | - | |||
Built land | 94,648.23 | - | −177.07 | - | 1.68 × | |||
Other land | 5.31 | - | −183.83 | - | 9.76 × | |||
Woodland | Water body | 1.98 | 1.53% | - | −315.15 | - | 6.24 × | −2.93 × |
Farmland | 1538.91 | - | −109.8 | - | 1.69 × | |||
Grassland | 252.45 | - | −97.36 | - | 2.46 × | |||
Built land | 344.16 | - | −286.87 | - | 9.87 × | |||
Grassland | Water body | 4.41 | 4.78% | - | −217.79 | - | 9.60 × 102 | 5.65 × |
Farmland | 4032.99 | - | −12.44 | - | 5.02 × | |||
Woodland | 2115.09 | 97.36 | - | 2.06 × | - | |||
Built land | 518.31 | - | −189.51 | - | 9.82 × | |||
Built land | Water body | 2599.65 | 2.77% | - | −28.28 | - | 7.35 × | 1.52 × |
Farmland | 1221.12 | 177.07 | - | 2.16 × | - | |||
Woodland | 1.26 | 286.87 | - | 3.61 × | - | |||
Grassland | 46.44 | 189.51 | - | 8.80 × | - | |||
Other land | 0.72 | - | −6.76 | - | 5 | |||
Other land | Water body | 0.18 | 0.00% | - | −21.52 | - | 4 | −2 |
Built land | 0.36 | 6.76 | - | 2 | - | |||
Total | 139,665.15 | - | - | - | 3.34 × | 1.82 × | −1.48 × |
Epoch | Training Time | Loss | ||
---|---|---|---|---|
Pre-Activation | Traditional | Pre-Activation | Traditional | |
50 | 8 s | 8 s | 0.073598 | 0.150706 |
100 | 12 s | 12 s | 0.023058 | 0.040288 |
150 | 16 s | 16 s | 0.008472 | 0.027461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yang, K.; Yang, W.; Qiang, H.; Xue, H.; Lu, B.; Zhou, P. R-MFNet: Analysis of Urban Carbon Stock Change against the Background of Land-Use Change Based on a Residual Multi-Module Fusion Network. Remote Sens. 2023, 15, 2823. https://doi.org/10.3390/rs15112823
Wang C, Yang K, Yang W, Qiang H, Xue H, Lu B, Zhou P. R-MFNet: Analysis of Urban Carbon Stock Change against the Background of Land-Use Change Based on a Residual Multi-Module Fusion Network. Remote Sensing. 2023; 15(11):2823. https://doi.org/10.3390/rs15112823
Chicago/Turabian StyleWang, Chunyang, Kui Yang, Wei Yang, Haiyang Qiang, Huiyuan Xue, Bibo Lu, and Peng Zhou. 2023. "R-MFNet: Analysis of Urban Carbon Stock Change against the Background of Land-Use Change Based on a Residual Multi-Module Fusion Network" Remote Sensing 15, no. 11: 2823. https://doi.org/10.3390/rs15112823
APA StyleWang, C., Yang, K., Yang, W., Qiang, H., Xue, H., Lu, B., & Zhou, P. (2023). R-MFNet: Analysis of Urban Carbon Stock Change against the Background of Land-Use Change Based on a Residual Multi-Module Fusion Network. Remote Sensing, 15(11), 2823. https://doi.org/10.3390/rs15112823