A Novel Geo-Localization Method for UAV and Satellite Images Using Cross-View Consistent Attention
<p>The samples of UAV and satellite images geo-localization are shown. The image retrieval task is between a satellite image block and several drone view images. Our method achieved image retrieval mainly by obtaining the cross-view consistent attention information.</p> "> Figure 2
<p>The proposed method consists of four main parts: a color transfer module, a one-stage training method for image retrieving, a piecewise soft-margin triplet loss function, and a similarity calculation module for the test images.</p> "> Figure 3
<p>A color-space-based color transfer function is introduced to assimilate drone and satellite images. The color distribution of satellite is used as the reference for the UAV images.</p> "> Figure 4
<p>The influence of the output feature dimension for the model.</p> "> Figure 5
<p>The influence of hyper-parameter <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 6
<p>The top-<span class="html-italic">k</span> recall rate denoted as R@k has been employed, which measures the rank position of positive samples among all reference samples.</p> "> Figure 7
<p>An example of the attention map of the last layer is demonstrated. The result illustrates that the transformer encoder can perform better for learning correct cross-view consistent image information after color transfer.</p> ">
Abstract
:1. Introduction
- In this paper, a single-stage training cross-view geolocation image retrieval method is proposed, which simultaneously extracts cross-view features and accomplishes image retrieval. Our approach achieved the highest retrieval accuracy while reducing the complexity and time consumption of model training among other existing methods.
- A novel piecewise loss function is first proposed. Compared with the loss function used by the existing methods, it can overcome the problem of a small proportion of positive samples in training. The Loss functions, together with the color transfer modules and data augmentation techniques, enable the model to learn drone and satellite image information effectively, contributing to extracting cross-view consistent attention features and improving geo-localization accuracy.
- Our method achieves state-of-the-art results on the benchmark University-1652. All codes will be publicized to promote reproducibility. (https://github.com/zfcui33/CCA (accessed on 14 September 2023)).
2. Related Works
2.1. Image Retrieval Methods for Cross-View Geo-Localization
2.2. UAV to Satellite Geo-Localization
2.3. Vision Transformer
3. Proposed Method
3.1. System Overview
3.2. Vision Transformer
3.3. Color Transfer
3.4. Similarity Calculation for Embedded Vectors
3.5. Piecewise Soft-Margin Triplet Loss Function
3.6. Data Augment
4. Experiments
4.1. Implementation Details
4.1.1. Dataset and Evaluation Metrics
4.1.2. Model Construction and Pre-Training
4.1.3. Optimizer
4.1.4. Computing Resource
4.2. Hyper-Parameters Analysis
4.2.1. Compound Impact of Learning Rate and Output Feature Vector Dimensions
4.2.2. Output Feature Vector Dimensions
4.2.3. Similarity Calculation
4.2.4. Hyper-Parameters in Piecewise Loss Function
4.3. Experiment Results
4.3.1. Comparison with Other Methods
4.3.2. Computation Cost
4.4. Ablation Study
4.4.1. Ablation Study of Color Transfer
4.4.2. Ablation Study of Loss Function
4.4.3. Ablation Study of Data Augmentation
4.5. Visualization and Interpretation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tomic, T.; Schmid, K.; Lutz, P.; Domel, A.; Kassecker, M.; Mair, E.; Grixa, I.L.; Ruess, F.; Suppa, M.; Burschka, D. Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 2012, 19, 46–56. [Google Scholar] [CrossRef]
- Filipovs, J.; Berg, A.; Ahlberg, J.; Vecvanags, A.; Brauns, A.; Jakovels, D. UAV areal imagery-based wild animal detection for sustainable wildlife management. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021. [Google Scholar]
- Ollero, A.; Merino, L. Unmanned aerial vehicles as tools for forest-fire fighting. For. Ecol. Manag. 2006, 234, S263. [Google Scholar] [CrossRef]
- Sherstjuk, V.; Zharikova, M.; Sokol, I. Forest fire-fighting monitoring system based on UAV team and remote sensing. In Proceedings of the 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 24–26 April 2018; pp. 663–668. [Google Scholar]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Pothuganti, K.; Jariso, M.; Kale, P. A review on geo mapping with unmanned aerial vehicles. Int. J. Innov. Res. Comput. Commun. Eng. 2017, 5, 1170–1177. [Google Scholar]
- Samad, A.M.; Kamarulzaman, N.; Hamdani, M.A.; Mastor, T.A.; Hashim, K.A. The potential of Unmanned Aerial Vehicle (UAV) for civilian and mapping application. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013; pp. 313–318. [Google Scholar]
- Wang, T.; Zheng, Z.; Hamdani, M.A.; Mastor, T.A.; Hashim, K.A.; Yan, C.; Zhang, J.; Sun, Y.; Zheng, B.; Yang, Y. Each part matters: Local patterns facilitate cross-view geo-localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 867–879. [Google Scholar]
- Tian, X.; Shao, J.; Ouyang, D.; Shen, H.T. Uav-satellite view synthesis for cross-view geo-localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4804–4815. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, Z.; Zhong, Z.; Luo, Z.; Li, S.; Yang, Y.; Sebe, N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. IEEE Trans. Image Process. 2022, 31, 3780–3792. [Google Scholar] [CrossRef]
- Zhuang, J.; Dai, M.; Chen, X.; Zheng, E. A Faster and More Effective Cross-View Matching Method of UAV and Satellite Images for UAV Geolocalization. Remote Sens. 2021, 13, 3979. [Google Scholar] [CrossRef]
- Zheng, Z.; Wei, Y.; Yang, Y. University-1652: A multi-view multi-source benchmark for drone-based geo-localization. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 1395–1403. [Google Scholar]
- Zhu, S.; Shah, M.; Chen, C. Transgeo: Transformer is all you need for cross-view image geo-localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1162–1171. [Google Scholar]
- Dai, M.; Hu, J.; Zhuang, J.; Zheng, E. A transformer-based feature segmentation and region alignment method for uav-view geo-localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4376–4389. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. In Proceedings of the International Conference on Machine Learning, Virtual Event, 18–24 July 2021; pp. 10347–10357. [Google Scholar]
- Brejcha, J.; Čadík, M. State-of-the-art in visual geo-localization. Pattern Anal. Appl. 2017, 20, 613–637. [Google Scholar] [CrossRef]
- Zhang, W.; Kosecka, J. Image based localization in urban environments. In Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), Chapel Hill, NC, USA, 14–16 June 2006; pp. 33–40. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Johns, E.; Yang, G.Z. From images to scenes: Compressing an image cluster into a single scene model for place recognition. In Proceedings of the 2011 International Conference on Computer Vision, Sophia Antipolis, France, 20–22 September 2011; pp. 874–881. [Google Scholar]
- Sivic, J.; Zisserman, A. Video Google: A text retrieval approach to object matching in videos. In Proceedings of the Computer Vision, IEEE International Conference on IEEE Computer Society, Nice, France, 13–16 October 2003; Volume 3, p. 1470. [Google Scholar]
- Roshan Zamir, A.; Ardeshir, S.; Shah, M. Gps-tag refinement using random walks with an adaptive damping factor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 4280–4287. [Google Scholar]
- Mishkin, D.; Perdoch, M.; Matas, J. Place recognition with WxBS retrieval. In Proceedings of the CVPR 2015 Workshop on Visual Place Recognition in Changing Environments, Boston, MA, USA, 7–12 June 2015; Volume 30. [Google Scholar]
- Hu, S.; Feng, M.; Nguyen, R.M.; Lee, G.H. Cvm-net: Cross-view matching network for image-based ground-to-aerial geo-localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7258–7267. [Google Scholar]
- Hu, S.; Lee, G.H. Image-based geo-localization using satellite imagery. Int. J. Comput. Vis. 2020, 128, 1205–1219. [Google Scholar] [CrossRef]
- Liu, L.; Li, H. Lending orientation to neural networks for cross-view geo-localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5624–5633. [Google Scholar]
- Rodrigues, R.; Tani, M. Are these from the same place? seeing the unseen in cross-view image geo-localization. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3753–3761. [Google Scholar]
- Shi, Y.; Yu, X.; Liu, L.; Zhang, T.; Li, H. Optimal feature transport for cross-view image geo-localization. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11990–11997. [Google Scholar]
- Shi, Y.; Yu, X.; Liu, L.; Campbell, D.; Koniusz, P.; Li, H. Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image Matching. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2682–2697. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Shao, J.; Ouyang, D.; Zhu, A.; Chen, F. SMDT: Cross-View Geo-Localization with Image Alignment and Transformer. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Sultani, W.; Zhou, Y.; Wshah, S. Cross-View Geo-Localization via Learning Disentangled Geometric Layout Correspondence. Proc. AAAI Conf. Artif. Intell. 2023, 37, 3480–3488. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, L.; Yu, X.; Li, H. Spatial-aware feature aggregation for image based cross-view geo-localization. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 8–14 December 2019. [Google Scholar]
- Yang, H.; Lu, X.; Zhu, Y. Cross-view geo-localization with layer-to-layer transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 29009–29020. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Kan, R.; Lei, D.; Minjie, W.; Guohua, G.; Qian, C. Target localization based on cross-view matching between UAV and satellite. Chin. J. Aeronaut. 2022, 35, 333–341. [Google Scholar]
- Ding, L.; Zhou, J.; Meng, L.; Long, Z. A practical cross-view image matching method between UAV and satellite for UAV-based geo-localization. Remote Sens. 2020, 13, 47. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: San Francisco, CA, USA, 2017; Volume 30. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction Without Convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 568–578. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. CvT: Introducing Convolutions to Vision Transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 22–31. [Google Scholar]
- Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; Jégou, H. Going Deeper With Image Transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 32–42. [Google Scholar]
- Jiang, Z.H.; Hou, Q.; Yuan, L.; Zhou, D.; Shi, Y.; Jin, X.; Wang, A.; Feng, J. All Tokens Matter: Token Labeling for Training Better Vision Transformers. In Proceedings of the Advances in Neural Information Processing Systems; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: San Francisco, CA, USA, 2021; Volume 34, pp. 18590–18602. [Google Scholar]
- Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Thomas, J.; Bowyer, K.W.; Kareem, A. Color balancing for change detection in multitemporal images. In Proceedings of the 2012 IEEE Workshop on the Applications of Computer Vision (WACV), Breckenridge, CO, USA, 9–11 January 2012; pp. 385–390. [Google Scholar] [CrossRef]
- Ugliano, M.; Bianchi, L.; Bottino, A.; Allasia, W. Automatically detecting changes and anomalies in unmanned aerial vehicle images. In Proceedings of the 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Turin, Italy, 16–18 September 2015; pp. 484–489. [Google Scholar] [CrossRef]
- Chechik, G.; Sharma, V.; Shalit, U.; Bengio, S. Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 2010, 11, 1109–1135. [Google Scholar]
- Regmi, K.; Shah, M. Bridging the Domain Gap for Ground-to-Aerial Image Matching. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Cai, S.; Guo, Y.; Khan, S.; Hu, J.; Wen, G. Ground-to-Aerial Image Geo-Localization With a Hard Exemplar Reweighting Triplet Loss. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, California, USA, 4–9 December 2017. [Google Scholar]
- Wightman, R. PyTorch Image Models. 2019. Available online: https://github.com/rwightman/pytorch-image-models (accessed on 11 August 2023).
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the CVPR09, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. arXiv 2017, arXiv:abs/1711.05101. [Google Scholar]
- Lin, T.Y.; Cui, Y.; Belongie, S.; Hays, J. Learning deep representations for ground-to-aerial geolocalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5007–5015. [Google Scholar]
Learning Rate | Feature Dimension | Similarity Calculation | R@1 | R@5 | R@10 | AP |
---|---|---|---|---|---|---|
1 × 10 | 1000 | cosine | 78.52 | 94.46 | 96.99 | 82.07 |
1 × 10 | 4000 | cosine | 80.42 | 95.16 | 97.30 | 83.67 |
1 × 10 | 1000 | cosine | 86.57 | 69.48 | 97.93 | 88.78 |
1 × 10 | 4000 | cosine | 86.46 | 96.53 | 97.82 | 88.74 |
1 × 10 | 1000 | euclid | 81.65 | 95.69 | 97.62 | 84.77 |
1 × 10 | 4000 | euclid | 91.12 | 98.73 | 99.57 | 92.89 |
1 × 10 | 1000 | euclid | 91.57 | 99.29 | 99.68 | 93.31 |
1 × 10 | 4000 | euclid | 88.58 | 98.32 | 99.24 | 90.73 |
Method | R@1 | AP | Inference Time |
---|---|---|---|
Ours with Euclid distance | 91.57 | 93.31 | 0.310 |
Ours with cosine similarity | 86.60 | 88.78 | 0.278 |
Method | Drone to Satellite | Satellite to Drone | ||||||
---|---|---|---|---|---|---|---|---|
R@1 | R@5 | R@10 | AP | R@1 | R@5 | R@10 | AP | |
Contrastive Loss [13,58] | 52.39 | - | - | 57.44 | 63.91 | - | - | 52.24 |
Triplet Loss (M = 0.3) [13,50] | 55.18 | - | - | 59.97 | 63.62 | - | - | 53.85 |
Triplet Loss (M = 0.5) [13,50] | 53.58 | - | - | 58.60 | 64.48 | - | - | 53.15 |
CVM-Net [13,26] | 53.21 | - | - | 58.03 | 65.62 | - | - | 54.47 |
Instance Loss [13] | 58.23 | - | - | 62.91 | 74.47 | - | - | 59.54 |
LCM [38] | 66.65 | 84.93 | 90.02 | 70.82 | 79.89 | 87.34 | 90.03 | 65.38 |
RK-Net [11] | 77.60 | - | - | 80.55 | 86.59 | - | - | 75.96 |
LPN [9] | 75.93 | - | - | 80.80 | 86.45 | - | - | 74.79 |
LPN [9] | 77.71 | - | - | 80.80 | 90.30 | - | - | 78.78 |
PCL [10] | 83.27 | 90.32 | 95.56 | 87.32 | 91.78 | 93.35 | 96.45 | 82.18 |
FSRA [15] | 82.25 | - | - | 84.82 | 87.87 | - | - | 81.53 |
FSRA [15] | 85.50 | - | - | 87.53 | 89.73 | - | - | 84.94 |
Ours | 91.57 | 99.29 | 99.68 | 93.31 | 94.44 | 97.00 | 97.86 | 91.55 |
Ours | 92.17 | 98.91 | 99.40 | 93.66 | 94.44 | 96.43 | 97.43 | 92.17 |
Method | Training GPU Memoery | Inference GPU Memoery | Inference Time Per-Image | AP |
---|---|---|---|---|
Ours with Resnet-50 | 9911 MB | 6867 MB | 0.261 | 70.64 |
Ours with ViT-S | 15,707 MB | 5351 MB | 0.315 | 84.50 |
Ours with DeiT-S | 8747 MB | 3551 MB | 0.310 | 93.31 |
Method | R@1 | R@5 | R@10 | AP |
---|---|---|---|---|
Ours | 91.57 | 99.29 | 99.68 | 93.31 |
Ours w/o color transfer | 84.61 | 96.18 | 97.64 | 87.17 |
Method | R@1 | R@5 | R@10 | AP |
---|---|---|---|---|
Triplet loss | 84.60 | 96.41 | 97.93 | 87.24 |
Advanced triplet loss | 89.07 | 98.47 | 99.58 | 91.23 |
Piecewise triplet loss | 91.57 | 99.29 | 99.68 | 93.31 |
Method | R@1 | R@5 | R@10 | AP |
---|---|---|---|---|
Ours | 91.57 | 99.29 | 99.68 | 93.31 |
Ours w/o data augmentation | 86.51 | 97.13 | 98.55 | 88.90 |
Ours w random color | 81.40 | 94.49 | 96.52 | 84.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Zhou, P.; Wang, X.; Zhang, Z.; Li, Y.; Li, H.; Zhang, Y. A Novel Geo-Localization Method for UAV and Satellite Images Using Cross-View Consistent Attention. Remote Sens. 2023, 15, 4667. https://doi.org/10.3390/rs15194667
Cui Z, Zhou P, Wang X, Zhang Z, Li Y, Li H, Zhang Y. A Novel Geo-Localization Method for UAV and Satellite Images Using Cross-View Consistent Attention. Remote Sensing. 2023; 15(19):4667. https://doi.org/10.3390/rs15194667
Chicago/Turabian StyleCui, Zhuofan, Pengwei Zhou, Xiaolong Wang, Zilun Zhang, Yingxuan Li, Hongbo Li, and Yu Zhang. 2023. "A Novel Geo-Localization Method for UAV and Satellite Images Using Cross-View Consistent Attention" Remote Sensing 15, no. 19: 4667. https://doi.org/10.3390/rs15194667