The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers
<p>Schematic of the lidar system. The laser emission system (red dotted box) mainly includes pump laser, OPO laser, seed laser, frequency multi-plier, beam expanding mirror, and some other optical path transition devices; the receiving and acquisition system (blue dotted box) includes a telescope, fiber, PMT, precision focusing system, data acquisition card, etc. The wavelength meter assists in the real-time monitoring of wavelengths. Computers are used to run equipment software and store data.</p> "> Figure 2
<p>Schematic of the OPO and OPA Module. The cavity mirror No. 1 introduces a seeder signal beam and is the output pulse signal beam; the cavity mirror No. 2 leads to draw pump and idler laser out of the cavity; the No. 3 cavity lens is fixed on a piezoelectric ceramic module, in order to the longitudinal mode optical cavity for fine-tuning; the No. 4 cavity mirror is to introduce into pump laser; the No. 5 mirror imports the pulse signal beam and pump beam to BBO crystal; the No. 6 mirror reflects the amplified pulsed laser. In the figure, the pump laser is is marked green, the continuous and pulse signal laser in red, the idle laser is marked yellow, and deep purple to represent detection laser.</p> "> Figure 3
<p>Schematic of the SHG Module. The output of the OPA beam (red) is sent through LBO crystal to generate a second harmonic beam (blue), while the left-over OPA pump beam (green) and fundamental (signal) beam are absorbed by respective beam dumps. Optical elements 7 and 8 are dichroic mirrors and 9 and 10 are reflection mirrors. In the figure, the pump laser is marked green, the pulse signal laser in red, and blue to represent detection laser.</p> "> Figure 4
<p>Specially designed reflectance curve of telescope coating.</p> "> Figure 5
<p>OPO laser linewidth measurement result. The above two diagrams are interference ring images of 393 nm and 423 nm respectively, and the following one is the result of the average linewidth of 100 pulses.</p> "> Figure 6
<p>The dye laser system and the OPO laser system output the laser burn patterns of the 393 nm. (<b>a</b>) is the burn patterns of the dye-based laser system, the system described in reference [<a href="#B15-remotesensing-15-04566" class="html-bibr">15</a>]; (<b>b</b>) is the burn patterns of the OPO laser system.</p> "> Figure 7
<p>A sample of received raw photon counts observed on 3 October 2020 with 10 min and 96 m temporal and vertical resolution from (<b>a</b>) Ca and (<b>b</b>) Ca<sup>+</sup> layers.</p> "> Figure 8
<p>Time/altitude contour plot of density of the Ca and the Ca<sup>+</sup> layer: (<b>a</b>) Ca: 15 July 2020, (<b>b</b>) Ca<sup>+</sup>: 15 July 2020, (<b>c</b>) Ca: 21 October 2020, (<b>d</b>) Ca<sup>+</sup>: 21 October 2020.</p> "> Figure 9
<p>Ca<sup>+</sup> layer in E-F region detected by OPO Lidar system at Yanqing Station.</p> "> Figure 10
<p>Detection limits calibration results, the raw photon counts of Ca<sup>+</sup> on 1 May 2021. The intersection of the red dotted line with the density line is the smallest detectable density limits value.</p> "> Figure 11
<p>Long-term background Ca<sup>+</sup> layer observed by lidar in Yanqing.</p> ">
Abstract
:1. Introduction
2. Lidar Configuration
2.1. Laser Emission System and the Key Technologies
2.1.1. Pump Laser
2.1.2. 786 nm/846 nm Seeder Laser
2.1.3. OPO Module and OPA Module
2.1.4. SHG Module
2.2. Receiving and Acquisition System
3. Advantages of Lidar Using OPO/OPA Technology
3.1. Gain Higher Emission Energy
3.2. With a Narrower Bandwidth
3.3. System Stability and Reliability
4. Initial Observation Results
4.1. Original Echo Signal Data Analysis
4.2. Density Evolution of the Ca Layer and the Ca+ Layer
4.3. Up to 300 km Ca+ Layer
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plane, J.M.C. The chemistry of meteoric metals in the Earth’s upper atmosphere. Int. Rev. Phys. Chem. 1991, 10, 55–106. [Google Scholar] [CrossRef]
- Plane, J.M.C. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 2012, 41, 6507–6518. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Nishimura, Y.; Xu, Z.; Yu, Z.; Plane, J.M.C.; Gardner, C.S.; Ogawa, Y. First Simultaneous Lidar Observations of Thermosphere-Ionosphere Fe and Na (TIFe and TINa) Layers at McMurdo (77.84°S, 166.67°E), Antarctica With Concurrent Measurements of Aurora Activity, Enhanced Ionization Layers, and Converging Electric Field. Geophys. Res. Lett. 2020, 47, e2020GL090181. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Papen, G.C. Resonance fluorescence lidar for measurements of the middle and upper atmosphere. In Laser Remote Sensing; Fujii, T., Fukuchi, T., Eds.; CRC Press Taylor and Francis: Boca Raton, FL, USA, 2005; pp. 179–432. [Google Scholar]
- Chu, X.; Yu, Z.; Gardner, C.S.; Chen, C.; Fong, W. Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8°S, 166.7°E), Antarctica. Geophys. Res. Lett. 2011, 38, L23807. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, N.; Soon, W.; Lu, G.; Jia, M.; Wang, X.; Xue, X.; Li, T.; Dou, X. The sporadic sodium layer: A possible tracer for the conjunction between the upper and lower atmospheres. Atmos. Chem. Phys. 2021, 21, 11927–11940. [Google Scholar] [CrossRef]
- Granier, G.; Jégou, J.P.; Mégie, G. Resonant lidar detection of Ca and Ca+ in the upper atmosphere. Geophys. Res. Lett. 1985, 12, 655–658. [Google Scholar] [CrossRef]
- Gardner, C.S.; Kane, T.J.; Senft, D.C.; Qian, J.; Papen, G.C. Simultaneous observations of sporadic E, Na, Fe, and Ca+ layers at Urbana, Illinois: Three case studies. J. Geophys. Res. 1993, 98, 16865–16874. [Google Scholar] [CrossRef]
- Qian, J.; Gardner, C.S. Simultaneous lidar measurements of mesospheric Ca, Na, and temperature profiles at Urbana, Illinois. J. Geophys. Res. Atmos. 1995, 100, 7453–7461. [Google Scholar] [CrossRef]
- Alpers, M.; Hoffner, J.; von Zahn, U. Upper atmosphere Ca and Ca+ at mid-latitudes: First simultaneous and common-volume lidar observations. Geophys. Res. Lett. 1996, 23, 567–570. [Google Scholar] [CrossRef]
- Gerding, M.; Alpers, M.; von Zahn, U.; Rollason, R.J.; Plane, J.M.C. Atmospheric Ca and Ca+ layers: Midlatitude observations and modeling. J. Geophys. Res. Atmos. 2000, 105, 27131–27146. [Google Scholar] [CrossRef]
- Tepley, C.A.; Raizada, S.; Zhou, Q.; Friedman, J.S. First simultaneous observations of CaC, K, and electron density using lidar and incoherent scatter radar at Arecibo. Geophys. Res. Lett. 2003, 30, 1009. [Google Scholar]
- Raizada, S.; Tepley, C.; Janches, D.; Friedman, J.; Zhou, Q.; Mathews, J. Lidar observations of Ca and K metallic layers from Arecibo and comparison with micrometeor sporadic activity. J. Atmos. Sol.-Terr. Phys. 2004, 66, 595–606. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Plane, J.M.C.; Gumbel, J. On the global distribution of sporadic sodium layers. Geophys. Res. Lett. 2007, 34, L15808. [Google Scholar] [CrossRef]
- Wu, F.; Zheng, H.; Cheng, X.; Yang, Y.; Li, F.; Gong, S.; Du, L.; Wang, J.; Yang, G. Simultaneous detection of the Ca and CaC layers by a dual-wavelength tunable lidar system. Appl. Opt. 2020, 59, 4122–4130. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Jiao, J.; Li, F.; Lin, X.; Liu, Z.; Batista, P.; Pimenta, A.; Andrioli, V.; Wang, J.; Chen, X.; et al. The technical optimization of Na-K lidar and to measure mesospheric Na and K over Brazil. J. Quant. Spectrosc. Radiat. Transf. 2021, 259, 107383. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Xie, Y.; Wang, T.; Dai, D.; Xiao, C.; Yang, X. Vibrational overtone excitation of D2 in a molecular beam with a high-energy, narrow-bandwidth, nanosecond optical parametric oscillator/amplifier. Rev. Sci. Instrum. 2020, 91, 053001. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Z.; Wu, Y.; Xia, Y.; Xun, Y.; Wu, F.; Jiao, J.; Du, L. Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability. Atmosphere 2023, 14, 1283. [Google Scholar] [CrossRef]
- She, C.-Y.; Vance, J.D.; Kawahara, T.D.; Williams, B.P.; Wu, Q. A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements. Can. J. Phys. 2007, 85, 111–118. [Google Scholar] [CrossRef]
- Raizada, S.; Tepley, C.A.; Aponte, N.; Cabassa, E. Characteristics of neutral calcium and Ca+ near the mesopause, and their relationship with sporadic ion/electron layers at Arecibo. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Chu, X.; Chen, Y.; Cullens, C.Y.; Yu, Z.; Xu, Z.; Zhang, S.; Huang, W.; Jandreau, J.; Immel, T.J.; Richmond, A.D. Mid-Latitude Thermosphere-Ionosphere Na (TINa) Layers Observed with High-Sensitivity Na Doppler Lidar over Boulder (40.13°N, 105.24°W). Geophys. Res. Lett. 2021, 48, e2021GL093729. [Google Scholar] [CrossRef]
- Friedman, J.S.; Chu, X.; Brum, C.G.M.; Lu, X. Observation of a thermospheric descending layer of neutral K over Arecibo. J. Atmos. Sol.-Terr. Phys. 2013, 104, 253–259. [Google Scholar] [CrossRef]
- Tsuda, T.T.; Chu, X.; Nakamura, T.; Ejiri, M.K.; Kawahara, T.D.; Yukimatu, A.S.; Hosokawa, K. A thermospheric Na layer event observed up to 140 km over Syowa Station (69.0°S, 39.6°E) in Antarctica. Geophys. Res. Lett. 2015, 42, 3647–3653. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Jiao, J.; Chu, X.; Jin, H.; Wang, Z.; Xun, Y.; Du, L.; Zheng, H.; Wu, F.; Xu, J.; Yuan, W.; et al. First Lidar Profiling of Meteoric Ca+ Ion Transport From ∼80 to 300 km in the Midlatitude Nighttime Ionosphere. Geophys. Res. Lett. 2022, 49, e2022GL100537. [Google Scholar] [CrossRef]
- Gao, Q.; Chu, X.; Xue, X.; Dou, X.; Chen, T.; Chen, J. Lidar observations of thermospheric Na layers up to 170 km with a descending tidal phase at Lijiang (26.7°N, 100.0°E), China. J. Geophys. Res. Space Phys. 2015, 120, 9213–9220. [Google Scholar] [CrossRef]
- Ejiri, M.K.; Nakamura, T.; Tsuda, T.T.; Nishiyama, T.; Abo, M.; Takahashi, T.; Tsuno, K.; Kawahara, T.D.; Ogawa, T.; Wada, S. Vertical fine structure and time evolution of plasma irregularities in the Es layer observed by a high-resolution Ca+ lidar. Earth Planets Space 2019, 71, 3. [Google Scholar] [CrossRef]
- Raizada, S.; Smith, J.A.; Lautenbach, J.; Aponte, N.; Perillat, P.; Sulzer, M.; Mathews, J.D. New Lidar Observations of Ca+ in the Mesosphere and Lower Thermosphere Over Arecibo. Geophys. Res. Lett. 2020, 47, e2020GL087113. [Google Scholar] [CrossRef]
Parameter | Ca | Ca+ |
---|---|---|
Wavelength (nm) (in the air) | 422.6728 | 393.3663 |
Pulse energy (mJ) | 31 | 30 |
Repetition rate (Hz) | 15 | 15 |
Linewidth (MHz) | 169.3 | 154.6 |
Telescope aperture (m) | 1.23 | |
Focal length (m) | 2.4 | |
Fiber diameter (mm) | 1.5 | |
Optical filter FWHM (nm) | 1 | |
Count rate (MHz) | 150 | |
Time resolution(s) | 66.7 | |
Spatial resolution(m) | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Zheng, H.; Xiao, C.; Cheng, X.; Wu, F.; Jiao, J.; Xun, Y.; Chen, Z.; Wang, J.; Yang, G. The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers. Remote Sens. 2023, 15, 4566. https://doi.org/10.3390/rs15184566
Du L, Zheng H, Xiao C, Cheng X, Wu F, Jiao J, Xun Y, Chen Z, Wang J, Yang G. The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers. Remote Sensing. 2023; 15(18):4566. https://doi.org/10.3390/rs15184566
Chicago/Turabian StyleDu, Lifang, Haoran Zheng, Chunlei Xiao, Xuewu Cheng, Fang Wu, Jing Jiao, Yuchang Xun, Zhishan Chen, Jiqin Wang, and Guotao Yang. 2023. "The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers" Remote Sensing 15, no. 18: 4566. https://doi.org/10.3390/rs15184566
APA StyleDu, L., Zheng, H., Xiao, C., Cheng, X., Wu, F., Jiao, J., Xun, Y., Chen, Z., Wang, J., & Yang, G. (2023). The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers. Remote Sensing, 15(18), 4566. https://doi.org/10.3390/rs15184566