A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR
"> Figure 1
<p>Beam scanning in the elevation plane.</p> "> Figure 2
<p>The model of the space–time coding array and transmitted signals.</p> "> Figure 3
<p>Radar’s receive window and complete echoes from far, middle, and near range targets on the swath. (1) The green signal represents the echo from the near-range target, which is illuminated by the pencil beam at a later moment, but its propagation delay is shorter due to the shorter slant range <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> </mrow> </semantics></math>; (2) the orange signal represents the echo from the far-range target, which is illuminated earlier by the pencil beam, but has a longer delay due to the longer slant range <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>f</mi> </msub> </mrow> </semantics></math>; (3) the black signal is the echo from the middle reference target with slant range <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, which is a compromise between the previous two.</p> "> Figure 4
<p>The imaging processing flowchart for F-SCAN SAR.</p> "> Figure 5
<p>The placement of the STCA and the relationship between some angles.</p> "> Figure 6
<p>Synthetic antenna patterns in different directions.</p> "> Figure 7
<p>Pencil beam pointing angle versus time.</p> "> Figure 8
<p>Ground scene layout of the targets.</p> "> Figure 9
<p>The magnitude of the F-SCAN SAR echoes from point targets <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>3</mn> </msub> </mrow> </semantics></math>. (<b>a</b>) Echoes in the two-dimensional time domain. (<b>b</b>) Echoes in the range-frequency, azimuth-time domain.</p> "> Figure 10
<p>Range compressed data and the partial magnifications of the target trajectories.</p> "> Figure 11
<p>Two-dimensional contour, range profile, and azimuth profile of the focused results. (<b>a1</b>–<b>a3</b>) The results for the point target <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </semantics></math>. (<b>b1</b>–<b>b3</b>) The results of the point target <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. (<b>c1</b>–<b>c3</b>) The results of point target <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>3</mn> </msub> </mrow> </semantics></math>. The results have been oversampled by a factor of 16 to show more details.</p> "> Figure 11 Cont.
<p>Two-dimensional contour, range profile, and azimuth profile of the focused results. (<b>a1</b>–<b>a3</b>) The results for the point target <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </semantics></math>. (<b>b1</b>–<b>b3</b>) The results of the point target <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. (<b>c1</b>–<b>c3</b>) The results of point target <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>3</mn> </msub> </mrow> </semantics></math>. The results have been oversampled by a factor of 16 to show more details.</p> "> Figure 12
<p>The SAR image acquired by the GF-3 satellite.</p> "> Figure 13
<p>Imaging results for the simulated echo. (<b>a</b>) The result from the conventional chirp scaling algorithm. (<b>b</b>) The result from the proposed algorithm (after flipping left and right).</p> ">
Abstract
:1. Introduction
2. System Characteristics of the F-SCAN SAR
3. Signal Modeling of the F-SCAN SAR
3.1. Modeling of the F-SCAN SAR Transmitted Signal
3.2. Modeling and Analysis of the F-SCAN SAR Echo
4. Imaging Processing for the F-SCAN SAR
4.1. The Novel Imaging Method Based on the Hybrid Correlation Algorithm
4.2. Analysis of the Doppler Parameters
5. Simulations and Results
5.1. Transmitted Signal Based on the STCA
5.2. Echo Compression and Imaging Results for the Point Targets
5.3. Imaging Results for the Surface Target
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sherwin, C.W.; Ruina, J.P.; Rawcliffe, R.D. Some Early Developments in Synthetic Aperture Radar Systems. IRE Trans. Mil. Electron. 1962, MIL–6, 111–115. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Currie, A.; Brown, M.A. Wide-Swath SAR. IEE Proc. F Radar Signal Process. 1992, 139, 122–135. [Google Scholar] [CrossRef]
- Gebert, N.; Fois, F.; Helière, F.; Lin, C.-C.; Arcioni, M. Multi-Channel SAR: Relaxing the Minimum Antenna Area Constraint. In Proceedings of the 2011 12th International Radar Symposium (IRS), Leipzig, Germany, 7–9 September 2011; IEEE: New York, NY, USA; pp. 53–58. [Google Scholar]
- Younis, M.; Wiesbeck, W. SAR with Digital Beamforming on Receive Only. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; IEEE: New York, NY, USA; Volume 3, pp. 1773–1775. [Google Scholar]
- Younis, M.; Fischer, C.; Wiesbeck, W. Digital Beamforming in SAR Systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1735–1739. [Google Scholar] [CrossRef]
- Süß, M.; Grafmüller, B.; Zahn, R. A Novel High Resolution, Wide Swath SAR System. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, 9–13 July 2001; Volume 3, pp. 1013–1015. [Google Scholar]
- Krieger, G.; Moreira, A. Potential of Digital Beamforming in Bi-and Multistatic SAR. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; IEEE: New York, NY, USA; Volume 1, pp. 527–529. [Google Scholar]
- Gebert, N.; Krieger, G.; Moreira, A. Digital Beamforming for HRWS-SAR Imaging: System Design, Performance and Optimization Strategies. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; IEEE: New York, NY, USA; pp. 1836–1839. [Google Scholar]
- Krieger, G.; Gebert, N.; Moreira, A. Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2007, 46, 31–46. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Younis, M.; Moreira, A. Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar]
- Bordoni, F.; Younis, M.; Varona, E.M.; Krieger, G. Adaptive Scan-on-Receive Based on Spatial Spectral Estimation for High-Resolution, Wide-Swath Synthetic Aperture Radar. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; IEEE: New York, NY, USA; Volume 1, p. I-64. [Google Scholar]
- Roemer, C. Introduction to a New Wide Area SAR Mode Using the F-SCAN Principle. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: New York, NY, USA; pp. 3844–3847. [Google Scholar]
- Roemer, C.; Gierlich, R.; Marquez-Martinez, J.; Notter, M. Frequency Scanning Applied to Wide Area SAR Imaging. In Proceedings of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, VDE, Aachen, Germany, 4–7 June 2018; pp. 1–5. [Google Scholar]
- Liu, Y.; Cui, L.; Wang, P.; Guo, Y. A Rasr Analysis Method Based on F-Scan Sar. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: New York, NY, USA; pp. 2043–2046. [Google Scholar]
- Nan, L.; Gai, G.; Shiyang, T.; Linrang, Z. Signal Modeling and Analysis for Elevation Frequency Scanning HRWS SAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6434–6450. [Google Scholar] [CrossRef]
- Scheiber, R.; Martone, M.; Gollin, N. Chirp Selection and Data Compression for Spaceborne Wide-Swath SAR in FScan-Mode. In Proceedings of the EUSAR 2021, 13th European Conference on Synthetic Aperture Radar, VDE, Online, 29 March–1 April 2021; pp. 1–6. [Google Scholar]
- Janoth, J.; Jochum, M.; Petrat, L.; Knigge, T. High Resolution Wide Swath—The Next Generation X-Band Mission. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3535–3537. [Google Scholar]
- Moreira, A.; Zink, M.; Bartusch, M.; Nuncio Quiroz, A.E.; Stettner, S. German Spaceborne SAR Missions. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 7–14 May 2021; pp. 1–6. [Google Scholar]
- Zhou, Y.; Liu, H.; Ma, F.; Pan, Z.; Zhang, F. A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Ma, F.; Sun, X.; Zhang, F.; Zhou, Y.; Li, H.-C. What Catch Your Attention in SAR Images: Saliency Detection Based on Soft-Superpixel Lacunarity Cue. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Nehorai, A.; Gini, F.; Greco, M.S.; Suppappola, A.P.; Rangaswamy, M. Introduction to the Issue on Adaptive Waveform Design for Agile Sensing and Communication. IEEE J. Sel. Top. Signal Process. 2007, 1, 2–5. [Google Scholar] [CrossRef]
- Shengqi, Z.H.U.; Kun, Y.U.; Jingwei, X.U.; Lan, L.A.N.; Ximin, L.I. Research Progress and Prospect for the Noval Waveform Diverse Array Radar. J. Radars 2021, 10, 795–810. [Google Scholar]
- Guccione, P.; Mapelli, D.; Giudici, D.; Persico, A.R. Design of F-SCAN Acquisition Mode for Synthetic Aperture Radar. Remote Sens. 2022, 14, 5283. [Google Scholar] [CrossRef]
- Babur, G.; Aubry, P.; Le Chevalier, F. Space-Time Radar Waveforms: Circulating Codes. J. Electr. Comput. Eng. 2013, 2013, 809691. [Google Scholar] [CrossRef]
- Babur, G.; Aubry, P.; Le Chevalier, F. Space-Time Codes for Active Antenna Systems: Comparative Performance Analysis. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013. [Google Scholar]
- Babur, G.; Aubry, P.; Chevalier, F.L. Simple Transmit Diversity Technique for Phased Array Radar. IET Radar Sonar Navig. 2016, 10, 1046–1056. [Google Scholar] [CrossRef]
- Nan, L.; Linrang, Z. Intrapulse Azimuth Frequency Scanning-Based 2-D Scanning SAR for HRWS Imaging. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9382–9396. [Google Scholar] [CrossRef]
- Nan, L.; Xuyang, W.; Ruyue, D.; Linrang, Z. Intrapulse Continuous Azimuth Frequency Scanning-Based Spotlight SAR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Wu, C.; Liu, K.Y.; Jin, M. Modeling and a Correlation Algorithm for Spaceborne SAR Signals. IEEE Trans. Aerosp. Electron. Syst. 1982, AES-18, 563–575. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House Print on Demand: Boston, MA, USA, 2005. [Google Scholar]
- Wang, P.; Liu, W.; Chen, J.; Niu, M.; Yang, W. A High-Order Imaging Algorithm for High-Resolution Spaceborne SAR Based on a Modified Equivalent Squint Range Model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1225–1235. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR Processing Using Chirp Scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of sensors | 51 |
Relative time offset (ns) | −0.1 |
Spacing between adjacent sensors (m) | 0.06 |
Pulse duration (us) | 180 |
Center frequency (GHz) | 10 |
Chirp bandwidth (MHz) | 1400 |
Parameter | Value |
---|---|
Orbit height (km) | 514 |
Antenna tilt angle (°) | 60 |
Observation mode | Stripmap |
Azimuth antenna (m) | 4 |
Pulse repetition frequency (Hz) | 4000 |
Range antenna | the STCA |
Range sampling frequency (MHz) | 1500 |
The length of the receive window (us) | 22 |
Target ID | Range | Azimuth | ||||||
---|---|---|---|---|---|---|---|---|
(m) | (m) 1 | PSLR(dB) | ISLR(dB) | (m) | (m) 2 | PSLR(dB) | ISLR(dB) | |
1.596 | 1.565 | −13.018 | −9.810 | 1.636 | 1.641 | −13.144 | −10.002 | |
1.584 | 1.565 | −13.143 | −10.010 | 1.642 | 1.641 | −13.285 | −10.000 | |
1.605 | 1.565 | −13.007 | −9.636 | 1.663 | 1.641 | −13.097 | −9.953 |
Parameter | |||||
Value | 8192 | 32,768 | 16 | 4096 | 32,768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, P.; Men, Z.; Guo, Y.; He, T.; Bao, R.; Cui, L. A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR. Remote Sens. 2023, 15, 4276. https://doi.org/10.3390/rs15174276
Liu Y, Wang P, Men Z, Guo Y, He T, Bao R, Cui L. A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR. Remote Sensing. 2023; 15(17):4276. https://doi.org/10.3390/rs15174276
Chicago/Turabian StyleLiu, Yuqing, Pengbo Wang, Zhirong Men, Yanan Guo, Tao He, Rui Bao, and Lei Cui. 2023. "A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR" Remote Sensing 15, no. 17: 4276. https://doi.org/10.3390/rs15174276
APA StyleLiu, Y., Wang, P., Men, Z., Guo, Y., He, T., Bao, R., & Cui, L. (2023). A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR. Remote Sensing, 15(17), 4276. https://doi.org/10.3390/rs15174276