Invariant Attribute-Driven Binary Bi-Branch Classification of Hyperspectral and LiDAR Images
<p>The graph structure construction is influenced by feature variations in the same class field.</p> "> Figure 2
<p>The architecture of the proposed IABC. The invariant attributes are captured by Invariant Attribute Extraction (IAE) and then transformed to construct an effective graph structure for the GCN. The Spatial Consistency Fusion (SCF) is designed to enhance the consistency of similar features in the observed area’s terrain feature information for the CNN. The collaboration between the CNN and GCN improves the classification performance while the CNN with binary weights reduces storage requirements and enables accelerating speed.</p> "> Figure 3
<p>Classification maps of different methods for the Houston2013 dataset.</p> "> Figure 4
<p>Classification maps of different methods for the Trento dataset.</p> ">
Abstract
:1. Introduction
- We systematically analyze the sensitivity of CNNs and GCNs to variations such as rotation, translation, and semantic information. To the best of our understanding, this is the first investigation in the community to explore the importance of spatial invariance in CNN and GCN networks. By extracting invariant features, we address the problem of feature variations caused by local semantic changes in spatial information modeling, thereby improving the accuracy of graph structure construction in the GCN network.
- By leveraging the advantages of both CNN and GCN, our proposed method has the ability to concurrently acquire features from fine-grained regular regions as well as coarse-grained irregular regions, leading to an enhanced structure representation of HSI and LiDAR images in the spectral–spatial domain. This improvement contributes to an overall enhancement in the classification accuracy of the network.
- To address the challenges posed by the high-dimensional nature of hyperspectral data and computational resource limitations, we introduce a lightweight binary CNN architecture that significantly reduces the number of parameters and computational requirements while still maintaining a high level of classification performance.
2. Related Work
2.1. Multimodal Classification
2.2. Network Compression
3. Proposed Method
3.1. Invariant Attribute Consistency Fusion
3.2. Bi-Branch Joint Classification
3.3. Binary Quantization
3.4. Loss Function
3.5. Experimental Setup
3.6. Ablation Study
3.7. Quantitative Comparison with the State-of-the-Art Classification Network
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HSI | Hyperspectral image |
CNN | Convolutional neural network |
GCN | Graph convolutional network |
KNN | K-nearest neighbors |
OA | Overall accuracy |
AA | Average accuracy |
BOPs | Bit-operations |
Params | Parameters |
References
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.Q.; Chan, J.C.W. Learning and transferring deep joint spectral–spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.J.; Zheng, C.H.; Yan, Q.; Xun, L.N. Classification of hyperspectral data using a multi-channel convolutional neural network. In Intelligent Computing Methodologies, Proceedings of the 14th International Conference, ICIC 2018, Wuhan, China, 15–18 August 2018; Part III; Springer: Cham, Switzerland, 2018; pp. 81–92. [Google Scholar]
- Hao, S.; Wang, W.; Ye, Y.; Nie, T.; Bruzzone, L. Two-stream deep architecture for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 56, 2349–2361. [Google Scholar] [CrossRef]
- Shahraki, F.F.; Prasad, S. Graph convolutional neural networks for hyperspectral data classification. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–28 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 968–972. [Google Scholar]
- Wan, S.; Gong, C.; Zhong, P.; Pan, S.; Li, G.; Yang, J. Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 2020, 59, 597–612. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [Google Scholar] [CrossRef]
- Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y.Y. Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 241–245. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5966–5978. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Hang, R.; Zhang, B.; Chanussot, J. Deep encoder–decoder networks for classification of hyperspectral and LiDAR data. IEEE Geosci. Remote Sens. Lett. 2020, 19, 5500205. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8657–8671. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Roy, S.K.; Deria, A.; Hong, D.; Rasti, B.; Plaza, A.; Chanussot, J. Multimodal fusion transformer for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5515620. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, B.; Li, C.; Hong, D.; Chanussot, J. Extended Vision Transformer (ExViT) for Land Use and Land Cover Classification: A Multimodal Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5514415. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Wang, L.; Yoon, K.J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3048–3068. [Google Scholar] [CrossRef]
- Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017, arXiv:1710.01878. [Google Scholar]
- Cai, Z.; He, X.; Sun, J.; Vasconcelos, N. Deep learning with low precision by half-wave gaussian quantization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5918–5926. [Google Scholar]
- Yang, J.; Shen, X.; Xing, J.; Tian, X.; Li, H.; Deng, B.; Huang, J.; Hua, X.S. Quantization networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 7308–7316. [Google Scholar]
- Han, T.; Li, D.; Liu, J.; Tian, L.; Shan, Y. Improving low-precision network quantization via bin regularization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 5261–5270. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2704–2713. [Google Scholar]
- Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with weights and activations constrained to + 1 or -1. arXiv 2016, arXiv:1602.02830. [Google Scholar]
- Hong, D.; Wu, X.; Ghamisi, P.; Chanussot, J.; Yokoya, N.; Zhu, X.X. Invariant attribute profiles: A spatial-frequency joint feature extractor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3791–3808. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Ghamisi, P.; Li, W.; Tao, R. MsRi-CCF: Multi-scale and rotation-insensitive convolutional channel features for geospatial object detection. Remote Sens. 2018, 10, 1990. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Skibbe, H.; Schmidt, T.; Blein, T.; Palme, K.; Brox, T.; Ronneberger, O. Rotation-invariant HOG descriptors using Fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 2014, 106, 342–364. [Google Scholar] [CrossRef]
- Liao, W.; Pižurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci. Remote Sens. Lett. 2014, 12, 552–556. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar] [CrossRef]
- Qin, H.; Gong, R.; Liu, X.; Shen, M.; Wei, Z.; Yu, F.; Song, J. Forward and backward information retention for accurate binary neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2250–2259. [Google Scholar]
- Wang, Y.; Lu, Y.; Blankevoort, T. Differentiable joint pruning and quantization for hardware efficiency. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 259–277. [Google Scholar]
- Zhang, J.; Lei, J.; Xie, W.; Li, Y.; Yang, G.; Jia, X. Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-one Self-teaching. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5614815. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259. [Google Scholar]
- Lu, T.; Ding, K.; Fu, W.; Li, S.; Guo, A. Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data. Inform. Fusion 2023, 93, 118–131. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, Q.; Sun, L.; Wu, Z.; Pan, C.; Jeon, B. Joint classification of hyperspectral and lidar data using a hierarchical cnn and transformer. IEEE Trans. Geosci. Remote Sens. 2022, 61, 5500716. [Google Scholar] [CrossRef]
Houston2013 | Trento | ||||||
---|---|---|---|---|---|---|---|
No. | Class Name | Training | Testing | No. | Class Name | Training | Testing |
1 | Healthy Grass | 198 | 1053 | 1 | Apples | 129 | 3905 |
2 | Stressed Grass | 190 | 1064 | 2 | Buildings | 125 | 2778 |
3 | Synthetic Grass | 192 | 505 | 3 | Ground | 105 | 374 |
4 | Tree | 188 | 1056 | 4 | Woods | 188 | 1056 |
5 | Soil | 186 | 1056 | 5 | Vineyard | 184 | 10,317 |
6 | Water | 182 | 143 | 6 | Roads | 122 | 3052 |
7 | Residential | 196 | 1072 | Total | 853 | 21,482 | |
8 | Commercial | 191 | 1053 | ||||
9 | Road | 193 | 1059 | ||||
10 | Highway | 191 | 1036 | ||||
11 | Railway | 181 | 1054 | ||||
12 | Parking Lot1 | 192 | 1041 | ||||
13 | Parking Lot2 | 184 | 285 | ||||
14 | Tennis Court | 181 | 247 | ||||
15 | Running Track | 187 | 473 | ||||
Total | 2832 | 12,197 |
GCN | CNN | IAE | SCF | OA (%) | AA (%) | () | |
---|---|---|---|---|---|---|---|
HSI | ✓ | 79.04 | 81.15 | 77.42 | |||
✓ | ✓ | 91.15 | 91.78 | 90.38 | |||
✓ | 80.84 | 83.58 | 79.28 | ||||
✓ | ✓ | 88.19 | 89.31 | 87.18 | |||
LiDAR | ✓ | 22.74 | 26.56 | 17.35 | |||
✓ | ✓ | 35.46 | 36.33 | 30.68 | |||
✓ | 28.33 | 35.89 | 24.10 | ||||
✓ | ✓ | 41.81 | 39.50 | 36.90 | |||
HSI + LiDAR | ✓ | ✓ | 92.60 | 93.20 | 91.97 | ||
✓ | ✓ | 89.46 | 90.72 | 88.55 | |||
✓ | ✓ | ✓ | 91.88 | 92.60 | 91.19 |
GCN | CNN | IAPs | SCF | OA (%) | AA (%) | () | |
---|---|---|---|---|---|---|---|
HSI | ✓ | 83.96 | 83.14 | 78.57 | |||
✓ | ✓ | 95.33 | 93.95 | 93.87 | |||
✓ | 96.06 | 92.63 | 94.72 | ||||
✓ | ✓ | 96.93 | 93.16 | 95.88 | |||
LiDAR | ✓ | 48.31 | 44.50 | 38.48 | |||
✓ | ✓ | 60.26 | 63.64 | 50.67 | |||
✓ | 90.81 | 83.56 | 88.20 | ||||
✓ | ✓ | 68.81 | 61.33 | 61.31 | |||
HSI + LiDAR | ✓ | ✓ | 97.66 | 96.38 | 96.87 | ||
✓ | ✓ | 97.87 | 94.04 | 97.29 | |||
✓ | ✓ | ✓ | 98.05 | 95.18 | 97.73 |
Houston2013 | Trento | |||||
---|---|---|---|---|---|---|
OA (%) | AA (%) | () | OA (%) | AA (%) | () | |
CNN | 91.88 | 92.60 | 91.19 | 98.05 | 95.18 | 97.73 |
GCN | 92.60 | 93.20 | 91.97 | 97.66 | 96.38 | 96.87 |
Joint | 92.78 | 93.29 | 92.15 | 98.14 | 97.03 | 97.50 |
CNN | OA (%) | AA (%) | () | Params(B) | BOPs |
---|---|---|---|---|---|
32w32a | 98.14 | 97.03 | 97.50 | 1045.6 K | 13,946.88 G |
1w32a | 97.86 | 95.17 | 97.13 | 32.675 K | 435.87 G |
32w1a | 85.33 | 83.40 | 80.81 | 1045.6 K | 435.87 G |
1w1a | 83.44 | 77.31 | 78.01 | 32.675 K | 13.62 G |
No. | MDL_RS_FC | EndNet | RNN | CALC | ViT | MFT | HCT | Exvit | IABC |
---|---|---|---|---|---|---|---|---|---|
1 | 82.15 | 82.34 | 81.80 | 80.72 | 82.59 | 82.34 | 82.91 | 81.20 | 83.10 |
2 | 84.40 | 83.18 | 71.40 | 81.20 | 82.33 | 88.78 | 91.35 | 85.15 | 85.15 |
3 | 100.00 | 100.00 | 76.04 | 93.86 | 97.43 | 98.15 | 100.00 | 99.80 | 100.00 |
4 | 91.48 | 91.19 | 88.51 | 96.78 | 92.93 | 94.35 | 91.10 | 91.38 | 93.18 |
5 | 99.15 | 99.24 | 85.76 | 100.00 | 99.84 | 99.12 | 100.00 | 99.62 | 100.00 |
6 | 95.10 | 95.10 | 85.78 | 95.80 | 84.15 | 99.30 | 95.80 | 93.01 | 95.80 |
7 | 87.50 | 83.02 | 82.77 | 93.10 | 87.84 | 88.56 | 81.06 | 91.51 | 82.46 |
8 | 52.99 | 76.45 | 61.44 | 92.78 | 79.93 | 86.89 | 94.97 | 97.44 | 90.41 |
9 | 77.34 | 71.48 | 67.42 | 82.34 | 82.94 | 87.91 | 88.29 | 88.48 | 90.84 |
10 | 77.32 | 64.77 | 38.45 | 67.37 | 52.93 | 64.70 | 76.45 | 81.56 | 98.94 |
11 | 84.06 | 88.52 | 64.39 | 98.67 | 80.99 | 98.64 | 97.25 | 94.31 | 97.82 |
12 | 97.21 | 94.24 | 77.07 | 97.02 | 91.07 | 94.24 | 91.55 | 93.76 | 98.46 |
13 | 76.49 | 76.49 | 47.13 | 82.81 | 87.84 | 90.29 | 88.42 | 90.53 | 82.81 |
14 | 100.00 | 100.00 | 97.98 | 99.19 | 100.00 | 99.73 | 100.00 | 97.57 | 100.00 |
15 | 98.52 | 98.31 | 73.50 | 100.00 | 99.65 | 99.58 | 95.56 | 97.04 | 100.00 |
OA (%) | 84.96 | 85.03 | 72.31 | 89.79 | 85.05 | 89.80 | 90.42 | 91.27 | 92.63 |
AA (%) | 86.91 | 86.96 | 73.30 | 90.78 | 86.83 | 91.51 | 91.65 | 92.16 | 93.26 |
() | 83.69 | 83.81 | 70.14 | 88.95 | 83.84 | 88.93 | 89.62 | 90.53 | 91.99 |
No. | MDL_RS_FC | EndNet | RNN | CALC | ViT | MFT | HCT | Exvit | IABC |
---|---|---|---|---|---|---|---|---|---|
1 | 88.22 | 91.32 | 91.75 | 98.62 | 90.87 | 98.23 | 98.82 | 99.13 | 96.24 |
2 | 93.34 | 96.44 | 99.47 | 99.96 | 99.32 | 99.34 | 99.64 | 98.56 | 98.27 |
3 | 95.19 | 95.72 | 79.23 | 72.99 | 92.69 | 89.84 | 100.00 | 77.81 | 95.72 |
4 | 94.54 | 99.22 | 99.58 | 100.00 | 100.00 | 99.82 | 99.70 | 100 | 99.89 |
5 | 83.46 | 82.91 | 98.39 | 99.44 | 97.77 | 99.93 | 70.98 | 99.92 | 99.70 |
6 | 80.67 | 89.15 | 85.86 | 88.76 | 86.72 | 88.72 | 87.35 | 91.78 | 95.15 |
OA (%) | 88.27 | 91.09 | 96.43 | 98.11 | 96.47 | 98.32 | 88.22 | 98.58 | 98.63 |
AA (%) | 89.24 | 92.46 | 92.38 | 93.30 | 94.56 | 95.98 | 92.75 | 94.53 | 97.49 |
() | 84.51 | 88.23 | 95.21 | 97.46 | 95.28 | 97.75 | 84.72 | 98.10 | 98.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lei, J.; Xie, W.; Li, D. Invariant Attribute-Driven Binary Bi-Branch Classification of Hyperspectral and LiDAR Images. Remote Sens. 2023, 15, 4255. https://doi.org/10.3390/rs15174255
Zhang J, Lei J, Xie W, Li D. Invariant Attribute-Driven Binary Bi-Branch Classification of Hyperspectral and LiDAR Images. Remote Sensing. 2023; 15(17):4255. https://doi.org/10.3390/rs15174255
Chicago/Turabian StyleZhang, Jiaqing, Jie Lei, Weiying Xie, and Daixun Li. 2023. "Invariant Attribute-Driven Binary Bi-Branch Classification of Hyperspectral and LiDAR Images" Remote Sensing 15, no. 17: 4255. https://doi.org/10.3390/rs15174255
APA StyleZhang, J., Lei, J., Xie, W., & Li, D. (2023). Invariant Attribute-Driven Binary Bi-Branch Classification of Hyperspectral and LiDAR Images. Remote Sensing, 15(17), 4255. https://doi.org/10.3390/rs15174255