Plant Ontogeny Strongly Influences SO2 Stress Resistance in Landscape Tree Species Leaf Functional Traits
"> Figure 1
<p>Mean leaf spectral reflectance for three different SO<sub>2</sub> treatments (T1–T3) on 1 September, 9 September, and 19 September 2019 for <span class="html-italic">S. oblate</span> (<b>a</b>,<b>b</b>), <span class="html-italic">P. cerasifera</span> (<b>c</b>,<b>d</b>) and <span class="html-italic">U. pumila</span> (<b>e</b>,<b>f</b>). Bars sharing a common letter are not significantly different (<span class="html-italic">p</span> < 0.05). Bars represent means ± SE (<span class="html-italic">n</span> = 9). Figure parts (<b>a</b>,<b>c</b>,<b>e</b>) represent the upper 10 days old leaves, and (<b>b</b>,<b>d</b>,<b>f</b>) are the lower 40 days old leaves.</p> "> Figure 2
<p>Light response curves under SO<sub>2</sub> stress (9 Sept). (<b>a</b>) Intercellular CO<sub>2</sub> concentration, Ci; (<b>b</b>) stomatal conductance, Gs; (<b>c</b>) net photosynthetic rate, Pn and (<b>d</b>) transpiration rate, Tr.</p> "> Figure 3
<p>SO<sub>2</sub> emissions from urban emissions in Jilin Province.</p> "> Figure 4
<p>Variation of SO<sub>2</sub> concentration in different seasons from 2015–2020.</p> "> Figure 5
<p>Trends of SO<sub>2</sub> concentration and vegetation characteristics in different seasons from 2015–2020 ((<b>a</b>). Changchun, (<b>b</b>). Baishan).</p> "> Figure 6
<p>Trends in domestic and industrial SO<sub>2</sub> emissions and vegetation characteristics in 2015–2020 ((<b>a</b>). Jilin, (<b>b</b>). Liaoyuan).</p> "> Figure 7
<p>Spatial distribution of the correlation between GPP and ρ(SO<sub>2</sub>) in different months in Spring, Summer and Autumn of 2015–2020. ((<b>a</b>). Mar., (<b>b</b>). Apr., (<b>c</b>). May., (<b>d</b>). Jun., (<b>e</b>). Jul., (<b>f</b>). Aug., (<b>g</b>). Sept., (<b>h</b>). Oct., (<b>i</b>). Nov., (<b>j</b>). Dec., (<b>k</b>). Jan., (<b>l</b>). Feb.).</p> "> Figure 7 Cont.
<p>Spatial distribution of the correlation between GPP and ρ(SO<sub>2</sub>) in different months in Spring, Summer and Autumn of 2015–2020. ((<b>a</b>). Mar., (<b>b</b>). Apr., (<b>c</b>). May., (<b>d</b>). Jun., (<b>e</b>). Jul., (<b>f</b>). Aug., (<b>g</b>). Sept., (<b>h</b>). Oct., (<b>i</b>). Nov., (<b>j</b>). Dec., (<b>k</b>). Jan., (<b>l</b>). Feb.).</p> "> Figure 8
<p>Broadleaf tree resistance to SO<sub>2</sub> stress in different seasons. The figure parts (<b>a</b>–<b>e</b>) represent the ρ(SO<sub>2</sub>) class. The affiliation values of different ρ(SO<sub>2</sub>) levels of resistance in the same season ((<b>a</b>). very low, (<b>b</b>). low, (<b>c</b>). moderate, (<b>d</b>). high, (<b>e</b>). very high) are shown horizontally, and the affiliation values of the same ρ(SO<sub>2</sub>) level of resistance in different seasons are shown vertically.</p> "> Figure 9
<p>The spatial distribution of ρ(SO<sub>2</sub>) in different seasons in 2015–2020. ((<b>a</b>). Spring, (<b>b</b>). Summer, (<b>c</b>). Autumn, (<b>d</b>). Winter).</p> "> Figure 10
<p>Relationship between GPP and urban air SO<sub>2</sub> concentration for the different vegetation types in 2019.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Study on the Effect of SO2 on the Leaves of Three Common Garden Tree Species
2.1.1. Experimental Materials and Design
2.1.2. Experimental Measurement and Data Processing
2.1.3. Comprehensive Evaluation of Tree Species Resistance to SO2
2.2. Remote Sensing Data
2.2.1. ρ(SO2) Product Data
2.2.2. Gross Primary Productivity (GPP)
2.2.3. MOD15A2H Data
2.2.4. Normalized Difference Vegetation Index (NDVI)
2.3. Statistical Data and Air Quality Data
2.3.1. SO2 Emissions
2.3.2. SO2 Concentration Daily Data
2.4. Statistical Analysis and Data Processing
2.4.1. Pearson’s Correlation
2.4.2. Data Processing
3. Results
3.1. Leaf Chlorophyll SPAD
3.2. Leaf Temperature
3.3. Leaf Spectral Reflectance
3.4. Chlorophyll Fluorescence
3.5. Different Tree Species Resistance Assessment
3.6. Stomatal Apertures and Photosynthetic Characteristics Characteristics of 10-Day Old Leaves from Different Tree Species
3.7. Seasonal and Annual Variation Characteristics of SO2 Stress on Different Tree Species
4. Discussion
4.1. Effect of SO2 Stress on Vegetation Characteristics
4.2. Broadleaf Tree Resistance to SO2 Stress in Different Seasons
4.3. Correlation between GPP and ρ(SO2) in Different Vegetation Types
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tagil, S.; Tecer, L.; Hakan. Impact of urbanization on local air quality: Differences in urban and rural areas of balikesir, turkey. Clean-Soil Air Water 2014, 42, 1489–1499. [Google Scholar] [CrossRef]
- Ge, W.; Liu, J.; Yi, K.; Xu, J.; Zhang, Y.; Hu, X.; Ma, J.; Wang, X.; Wan, Y.; Hu, J.; et al. Influence of atmospheric in-cloud aqueous-phase chemistry on global simu-lation of SO2 in CESM2. Atmos. Chem. Phys. 2021, 6, 406. [Google Scholar] [CrossRef]
- Yan, X.; Shi, W.; Zhao, W.; Luo, N. Estimation of atmospheric dust deposition on plant leaves based on spectral features. Spectrosc. Lett. 2014, 47, 536–542. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J. Environ. Manag. 2007, 88, 665–676. [Google Scholar] [CrossRef]
- Paull, N.J.; Krix, D.; Irga, P.J.; Torpy, F.R. Green wall plant tolerance to ambient urban air pollution. Urban For. Urban Gree. 2021, 63, 127201. [Google Scholar] [CrossRef]
- Ekene, N.K.; Chigozie, I.B.; Evelyn, U.O.; Nwakaego, E.E.; Ifeoma, O.J. Sensitivity and tolerance index of selected plant species as bioindicators of air pollution stress in abakaliki, ebonyi state, nigeria. Middle East J. Sci. Res. 2019, 27, 144–152. [Google Scholar] [CrossRef]
- Singh, S.K.; Rao, D.N.; Agrawal, M.; Pandey, J.; Naryan, D. Air pollution tolerance index of plants. J. Environ. Manag. 1991, 32, 45–55. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, M. Canopy density and roughness differentiate resistance of a tropical dry forest to major hurricane damage. Remote Sens. 2021, 13, 2262. [Google Scholar] [CrossRef]
- Majernik, O.; Mansfield, T.A. Effects of SO2 pollution on stomatal movements in Vicia faba. J. Phytopathol. 1971, 71, 0123–0128. [Google Scholar] [CrossRef]
- Katainen, H.S.; Mäkinen, E.; Jokinen, J.; Karjalainen, R.; Kellomaki, S. Effects of SO2 on the photosynthetic and respiration rates in Scots pine seedlings. Environ. Pollut. 1987, 46, 241–251. [Google Scholar] [CrossRef]
- Baxter, R.; Emes, M.J.; Lee, J.A. Effects of the bisulphite ion on growth and photosynthesis In Sphagnum cuspidatum Hoffm. New Phytol. 1989, 111, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, V.; Dubey, P.S. Amelioration of SO2 stress under fertilizer regime in a vegetable crop. Int. J. Environ. Stud. 2005, 62, 95–99. [Google Scholar] [CrossRef]
- Muneer, S.; Kim, T.H.; Choi, B.C.; Lee, B.S.; Lee, J.H. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate-glutathione pathway to induce Fragaria×annasa as a hyperaccumulator. Redox Biol. 2014, 2, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, A.L.; Han, E.Q.; Zhang, X.B.; Wu, F.J.; Xin, X.J.; Wang, T.; Zhang, S.S.; Wang, Y.S.; Cao, D.M. SO2-induced stomatal movement and its signal regulation in guard cells of Hemerocallis fulva. J. Environ. Sci. 2016, 36, 740–746. [Google Scholar] [CrossRef]
- Callahan, D.L.; Hare, D.J.; Bishop, D.P.; Doble, P.A.; Roessner, U. Elemental imaging of leaves from the metal hyperaccumulating plant noccaea caerulescens shows different spatial distribution of Ni, Zn and Cd. RSC Adv. 2016, 6, 2337–2344. [Google Scholar] [CrossRef] [Green Version]
- Deljanin, I.; Antanasijević, D.; Bjelajac, A.; Urošević, M.A.; Ristić, M. Chemometrics in biomonitoring: Distribution and correlation of trace elements in tree leaves. Sci. Total Environ. 2016, 545, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Oliva, P.; Zhang, P. The Effect of Air Pollution on Migration: Evidence from China; National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Wu, Y.; Yan, G.; Zhu, L.; Yu, X. Multi-scale comparison of the fine particle removal capacity of urban forests and wetlands. Sci. Rep-UK 2017, 7, 46214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, J.; Jiang, J. A Study on Water Parameters of Plantations in Mountain Areas of West Beijing (Ⅲ). J. Beijing For. Univ. 1994, 16, 46–53. [Google Scholar]
- Yang, M.; Pei, B.; Zhang, S. Advances in drought resistance of trees. Hebei J. For. Orchard R. 1997, 12, 87–93. [Google Scholar]
- Sun, Z.H. A study on the Drought Resistance of Acer Ginnala, Malus Baccata, Prunus Davidiana and Pyrus Ussuriensis. Doctoral Dissertation, Northeast Forestry University, Harbin, China, 2002. [Google Scholar]
- Steimetz, E.; Trouvelot, S.; Gindro, K.; Bordier, A.; Poinssot, B.; Adrian, M.; Daire, X. Influence of leaf age on induced resistance in grapevine against plasmopara viticola. Physiol. Mol. Plant P. 2012, 79, 89–96. [Google Scholar] [CrossRef]
- Develey-Riviere, M.P.; Galiana, E. Resistance to pathogens and host developmental stage: A multifaceted relationship within the plant kingdom. New Phytol. 2007, 175, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Farber, D.H.; Mundt, C.C. Effect of plant age and leaf position on susceptibility to wheat stripe rust. Phytopathology 2017, 107, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, S.; González-Zurdo, P.; García-Ciudad, A.; Escudero, A. Morphological and chemical leaf composition of mediterranean evergreen tree species according to leaf age. Trees 2011, 25, 669–677. [Google Scholar] [CrossRef]
- Mediavilla, A.E. Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. J. Ecol. 2003, 91, 880–889. [Google Scholar] [CrossRef]
- Gilmore, D.W.; Seymour, R.S.; Halteman, W.A.; Greenwood, M.S. Canopy dynamics and the morphological development of abies balsamea: Effects of foliage age on specific leaf area and secondary vascular development. Tree Physiol. 1995, 15, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuuluvainen, T.; Gauthier, S. Young and old forest in the boreal:critical stages of ecosystem dynamics and management under global change. For. Ecosys. 2018, 5, 5–26. [Google Scholar] [CrossRef]
- Adler, P.B.; Salguero-Gómez, R.; Compagnoni, A.; Hsu, J.S.; Ray-Mukherjee, J.; Mbeau-Ache, C.; Franco, M. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 2014, 111, 740–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhang, Y.; Yuan, W.; Zhu, S.D.; Liu, S.; Wan, X.C.; Liu, S.R. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum. Tree Physiol. 2021, 41, 1601–1610. [Google Scholar] [CrossRef]
- Diaz, S.; Fraser, L.H.; Grime, J.P.; Falczuk, V. The impact of elevated co2 on plant-herbivore interactions: Experimental evidence of moderating effects at the community level. Oecologia 1998, 117, 177–186. [Google Scholar] [CrossRef]
- Omasa, K.; Hashimoto, Y.; Aiga, I. A Quantitative analysis of the relationships between SO2 or N02 sorption and their acute effects on plant leaves using image instrument. Environ. Control. Biol. 1981, 19, 59–67. [Google Scholar] [CrossRef]
- Nilsson, H.E. Remote-sensing and image-analysis in plant pathology. Can. J. Plant Pathol. 1995, 17, 154–166. [Google Scholar] [CrossRef]
- Kooistra, L.; Wehrens, R.; Leuven, R.S.E.W.; Buydens, L.M.C. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river flood plains. Anal. Chim. Acta 2001, 446, 97–105. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Walvoort, D.J.J.; Mcbratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Orwell, R.L.; Wood, R.A.; Burchett, M.D.; Tarran, J.; Torpy, F. The potted-plant microcosm substantially reduces indoor air voc pollution: Ii. laboratory study. Water Air Soil Poll. 2006, 177, 59–80. [Google Scholar] [CrossRef]
- Li, J.; Zhou, G.; Zhang, L.; Li, K. Physiological Responses of Taxus cuspidate to Sulfur Dioxide Stress. Nor. Horticul. 2011, 9, 74–76. [Google Scholar]
- Wang, F.; Wu, D.J.; Zhai, G.; Zang, L. Diagnosing Low Health and Wood Borer Attacked Trees of Chinese Arborvitae by Using Thermograpy. Spectrosc. Spectr. Anal. 2015, 35, 130–135. [Google Scholar]
- Zhao, L.; Jing, J.; Wang, S. Studies on water transports in the soil-plant-atmosphere continuum on WeiBei rainfed highland, Shaanxi procinve—I. Effects of ecological and physiological factors on plant leaf water potential. Acta Bot. Boreal. Occident. Sin. 1996, 16, 345–350. [Google Scholar]
- Cai, H.; Kang, S. The Changing Pattern of Cotton Crop Canopy Tmperature and its Application in Detecing Crop Water Stress. Guangai Paishui. 1997, 16, 1–5. [Google Scholar]
- Anderson, J.M. Photoregulation of the Composition, Function, and Structure of Thylakoid Membranes. Annu. Rev. Plant. Phys. 1986, 37, 93–136. [Google Scholar] [CrossRef]
- Baker, N.R. A possible role for photosystem ii in environmental perturbations of photosynthesis. Phys. Plant. 1991, 81, 563–570. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.; Clevers, J.G.; Kooistra, L. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environ. Pollut. 2015, 206, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Resistance to sulfur dioxide of four colored-leaf species in prunus. Sci. Silvae Sin. 2008, 44, 28–33. [Google Scholar]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Alexander, S.; Holben, B.; Ferrare, R.A.; Hair, J.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Wargan, K. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Eltahan, M.; Magooda, M. Spatiotemporal Assessment of SO2, SO4 and AOD From Over MENA Domain From 2006 to 2016 Using Multiple Satellite Data and Reanalysis MERRA2 Data. J. Geosci. Environ. Prot. 2018, 7, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Munger, J.W.; Niu, Z.; Kuang, D. Comparison of multiple models for estimating gross primary production using MODIS and eddy co-variance data in Harvard Forest. Remote Sens. Environ. 2010, 114, 2925–2939. [Google Scholar] [CrossRef]
- Xiao, J.; Zhuang, Q.; Law, B.E. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 2010, 114, 576–591. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z. The Research of the Vegetation Change and the Sensitivity between NDVI and Climatic Factors in Qilian Mountains from 2000 to 2012. Master’s Thesis, Northwest Normal University, Changchun, China, 2014. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, X.; Yuan, J.; Huang, L. Morphology and photosynthetic parameters of Camellia oleifera leaves at different ages. Nonwood For. Res. 2016, 34, 6. [Google Scholar]
- Wang, H.; Wang, J.; Hu, Y.; Guo, H. Relationship between Flue_cured Tobacco Maturity and Leaf Angle. Tobacco Sci. Technol. 2005, 8, 32–34. [Google Scholar]
- Li, D.; Zhang, S.; Xu, Z. Relationship between Main Chemical Components in Leaf and Leaf Length in Different Positions in Tobacco (Nicotiana tabacum L.). Acta Agron. Sin. 2008, 34, 914–918. [Google Scholar] [CrossRef]
- Xu, A.; Xie, H.; Dai, X.; Yang, C.; Wang, Y.; Chen, W.; Liu, H.; Ye, X. Effects of Ridge-direction on Photosynthetic Characteristics of Leaves in Different Positions in Flue-cured Tobacco Field. Acta Agric. Jiangxi 2011, 23, 136–138. [Google Scholar]
- Wang, T.; He, F.; Zhan, J.; Huo, K.; Zhao, H.; Wang, M.; Gong, C. Color parameters and chemical components in different leaf positions of flue-cured tobacco leaves during bulk curing process. J. Hunan Agric. Univ. 2012, 38, 125–130. [Google Scholar] [CrossRef]
- Liu, Q. Study on Injury Response and Biochemical Resistantance to SO2 of Plants. Doctoral Dissertation, Shanxi Agricultural University, Jinzhong, China, 2003. [Google Scholar]
- Shu, J.; Cao, H.; Liu, Y.; Gao, Y. Effects of long-term exposure of Low concentration SO2 on the growth and Yield of Soybean. J. Ecojogy. 1990, 9, 28–30. [Google Scholar] [CrossRef]
- Liu, Q. Study on Acute Injury Symptom to SO2 of plant. Chin. Hort. Abs. 2009, 25, 15–16, 54. [Google Scholar]
- Omasa, K.; Saji, H. Air Pollution and Plant Biotechnology: Prospects for Phytomonitoring and Phytoremediation; Springer: Tokyo, Japan, 2002. [Google Scholar] [CrossRef]
- Zhou, N.; Jing, L.Q.; Wang, Y.X.; Zhu, J.G.; Yang, L.X.; Wang, Y.L. Dynamic effects of CO2 concentration and temperature increase on chlorophyll content and SPAD value in rice leaves in open air. Chin. Rice Sci. 2017, 31, 524–532. [Google Scholar]
- Mclaughlin, S.B.; Mcconathy, R.K. Effects of so2 and o3 on allocation of 14c-labeled photosynthate in phaseolus vulgaris. Plant Physiol. 1983, 73, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Van Heerden, P.D.R.; Strasser, R.J.; Krüger, G.H.J. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol. Plantarum. 2004, 121, 239–249. [Google Scholar] [CrossRef]
- Shi, K.; Ze, L.I.; Zhang, W.; Xiao, H.E.; Zeng, Y.; Tan, X. Influence of different light intensity on the growth, diurnal change of photosynthesis and chlorophyll fluorescence of tung tree seedling. J. Central South Univ. For. Technol. 2018, 38, 35–42. [Google Scholar]
- Wang, F.; Zhang, J.Q. Important Characteristics and Mechanisms of Woody Plants in Response to Environmental Stress; Science Press: Beijing, China, 2017. [Google Scholar]
- Chen, Z.; Du, G.; Miao, Y. Resistance to and absorption of gaseous HF with 38 landscaping plant species in Zhejiang Province. J. Zhejiang For. Coll. 2008, 25, 475–480. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Z.; Chen, Y.; Du, G. Resistance to and absorbency of gaseous NO2 for 38 young landscaping plants in Zhejiang Province. J. Zhejiang For. Coll. 2009, 25, 765–771. [Google Scholar] [CrossRef]
- Sun, F.B.; Yin, Z.; Lun, X.; Zhao, Y.; Li, R.; Shi, F.; Yu, X. Deposition Velocity of PM2.5 in the Winter and Spring above Deciduous and Coniferous Forests in Beijing, China. PLoS ONE 2014, 9, e97723. [Google Scholar] [CrossRef]
- Lu, M.; Li, Y. Research on absorption and purgation ability to atmospheric pollutants of some garden plants. J. Shandong Ins. Arch. Eng. 2002, 17, 45–49. [Google Scholar] [CrossRef]
- Wang, K.; Hai-Mei, L.I. Effect of Dust-detaining of Ground Cover Plants in Chengyang District of Qingdao City. Acta Agric. Jiangxi 2009, 21, 68–70. [Google Scholar]
- Song, Y.S.; Wang, X.K.; Maher, B.A.; Li, F.; Xu, C.; Liu, X.; Sun, X.; Zhang, Z. The spatial-temporal characteristics and health impacts of ambient fine particulate matter in china. J. Clean Prod. 2016, 112, 1312–1318. [Google Scholar] [CrossRef]
- Liu, M. Forest resistance and resilience to 2002 drought in northern china. Remote Sens. 2021, 13, 2919. [Google Scholar] [CrossRef]
- Lin, N. Study on the Change and Drving Force of Vegetation Cover in Eastern Jilin Province Based on RS and GIS Technology. Doctoral Dissertation, Jilin University, Changchun, China, 2010. [Google Scholar] [CrossRef]
Time | Tree Species | ||
---|---|---|---|
S. oblata | P. cerasifera | U. pumila | |
Before fumigating | |||
After fumigation |
Experiment Time | Experimental Event | |
---|---|---|
Before fumigation | 19 May 2019 | Potted plants (1-year-old seedlings) |
8 August 2019 | Measure the index before placing in the fumigation chamber | |
20–26 August 2019 | Plants placed into the fumigation chamber for 1 week | |
28 August 2019 | The indexes were measured after 1 week of adaptation | |
During fumigation | 30–31 August 2019 | Fumigation |
1 September 2019 | Measurement index | |
7–8 September 2019 | Fumigation | |
9 September 2019 | Measurement index | |
13–14 September 2019 | Fumigation | |
15 September 2019 | Measurement index | |
20–21 September 2019 | Fumigation | |
22 September 2019 | Measurement index |
Time | Tree Species | Treatment | 10 Days | 40 Days |
---|---|---|---|---|
1-Sep | S. oblate | T1 | 37.83 ± 5.53 b | 41.63 ± 2.04 b |
T2 | 48.1 ± 3.05 a | 49.5 ± 2.16 a | ||
T3 | 20.06 ± 7.08 c | 34.73 ± 6.35 c | ||
P. cerasifera | T1 | 32.26 ± 0.40 ab | 47.23 ± 2.61 a | |
T2 | 36.4 ± 1.15 a | 51.9 ± 12.5 a | ||
T3 | 29.93 ± 0.49 b | 40.96 ± 3.00 a | ||
U. pumila | T1 | 18.56 ± 1.01 a | 23.1 ± 0.62 b | |
T2 | 19.23 ± 3.72 a | 29.8 ± 2.95 a | ||
T3 | 6.9 ± 2.62 b | 18.16 ± 0.66 c | ||
9-Sep | S. oblate | T1 | 45.63 ± 1.11 b | 46.8 ± 5.53 ab |
T2 | 51.2 ± 4.08 a | 54.7 ± 2.49 a | ||
T3 | 38.6 ± 4.15 c | 42.53 ± 3.80 b | ||
P. cerasifera | T1 | 33.53 ± 0.46 b | 43.76± b | |
T2 | 44.4 ± 1.80 a | 55.73 ± 0.51 a | ||
T3 | 28 ± 1.05 c | 41.4 ± 0.96 c | ||
U. pumila | T1 | 22.93 ± 2.55 a | 27.63 ± 2.44 a | |
T2 | 26.73 ± 1.90 a | 28.13 ± 2.10 a | ||
T3 | 14.56 ± 0.60 b | 24.8 ± 6.21 a | ||
19-Sep | S. oblate | T1 | 28.06 ± 2.45 b | 31.76 ± 5.00 ab |
T2 | 34.13 ± 1.85 a | 39.26 ± 4.74 a | ||
T3 | 22.26 ± 3.00 c | 20.73 ± 8.50 c | ||
P. cerasifera | T1 | 27.7 ± 0.26 a | 35.26 ± 4.74 a | |
T2 | 30.63 ± 2.70 a | 36.76 ± 1.27 a | ||
T3 | 18.83 ± 2.27 b | 21.5 ± 2.26 b | ||
U. pumila | T1 | 18.9 ± 2.78 b | 27.13 ± 1.18 b | |
T2 | 26.26 ± 2.45 a | 36.23 ± 10.8 a | ||
T3 | 18.53 ± 1.00 b | 19.83 ± 5.84 b |
Time | Tree Species | Treatment | 10 Days | 40 Days |
---|---|---|---|---|
S. oblate | T1 | 28.87 ± 0.48 c | 25.39 ± 0.92 c | |
9-Sep | T2 | 30.77 ± 0.50 b | 26.99 ± 0.40 b | |
T3 | 31.77 ± 0.15 a | 28.10 ± 0.42 a | ||
P. cerasifera | T1 | 29.22 ± 0.80 c | 25.76 ± 0.53 c | |
T2 | 30.06 ± 0.48 b | 29.10 ± 1.04 b | ||
T3 | 31.17 ± 1.30 a | 30.44 ± 0.77 a | ||
U. pumila | T1 | 28.49 ± 2.52 c | 25.92 ± 0.47 c | |
T2 | 29.31 ± 0.44 b | 28.40 ± 0.48 b | ||
T3 | 30.35 ± 0.88 a | 30.18 ± 0.18 a | ||
19-Sep | S. oblate | T1 | 24.38 ± 0.43 c | 22.22 ± 0.22 c |
T2 | 29.50 ± 0.81 b | 23.09 ± 0.48 b | ||
T3 | 30.48 ± 0.46 a | 24.45 ± 0.39 a | ||
P. cerasifera | T1 | 25.47 ± 0.87 c | 24.15 ± 0.73 c | |
T2 | 27.43 ± 0.14 b | 25.05 ± 1.35 b | ||
T3 | 28.79 ± 0.40 a | 26.79 ± 1.00 a | ||
U. pumila | T1 | 25.36 ± 0.21 c | 22.33 ± 1.92 c | |
T2 | 26.85 ± 0.77 b | 22.8 ± 0.43 b | ||
T3 | 27.97 ± 0.74 a | 23.85 ± 1.20 a |
Tree Species | Treatment | 1-Sep | 9-Sep | 19-Sep | |||
---|---|---|---|---|---|---|---|
10 Days | 40 Days | 10 Days | 40 Days | 10 Days | 40 Days | ||
S. oblata | T1 | 0.61 ± 0.11 b | 0.65 ± 0.08 b | 0.66 ± 0.10 b | 0.71 ± 0.04 b | 0.61 ± 0.11 b | 0.65 ± 0.08 b |
T2 | 0.66 ± 0.11 a | 0.69 ± 0.06 a | 0.74 ± 0.01 a | 0.77 ± 0.01 a | 0.66 ± 0.11 a | 0.69 ± 0.06 a | |
T3 | 0.46 ± 0.08 c | 0.49 ± 0.13 c | 0.66 ± 0.00 b | 0.66 ± 0.04 c | 0.46 ± 0.08 c | 0.49 ± 0.13 c | |
P. cerasifera | T1 | 0.49 ± 0.05 b | 0.59 ± 0.08 b | 0.66 ± 0.07 b | 0.74 ± 0.00 a | 0.49 ± 0.05 b | 0.59 ± 0.08 b |
T2 | 0.66 ± 0.03 a | 0.70 ± 0.01 a | 0.72 ± 0.03 a | 0.74 ± 0.02 a | 0.65 ± 0.01 a | 0.66 ± 0.03 a | |
T3 | 0.35 ± 0.08 c | 0.39 ± 0.09 c | 0.59 ± 0.11 c | 0.69 ± 0.04 b | 0.33 ± 0.02 c | 0.35 ± 0.08 c | |
U. pumila | T1 | 0.39 ± 0.06 b | 0.46 ± 0.09 b | 0.47 ± 0.14 c | 0.58 ± 0.00 b | 0.39 ± 0.06 b | 0.46 ± 0.09 b |
T2 | 0.43 ± 0.11 a | 0.51 ± 0.01 a | 0.59 ± 0.04 a | 0.61 ± 0.04 a | 0.43 ± 0.11 a | 0.51 ± 0.01 a | |
T3 | 0.20 ± 0.13 c | 0.34 ± 0.05 c | 0.50 ± 0.06 b | 0.51 ± 0.03 c | 0.39 ± 0.04 b | 0.39 ± 0.13 c |
Sampling Time | Tree Species | S. oblata | P. cerasifera | U. pumila | |||
---|---|---|---|---|---|---|---|
Leaf Age | 10 Days | 40 Days | 10 Days | 40 Days | 10 Days | 40 Days | |
1-Sep | T1 | 0.67 | 0.82 | 0.7 | 0.81 | 0.85 | 0.64 |
T2 | 0.5 | 0.63 | 0.5 | 0.85 | 0.59 | 0.75 | |
T3 | 0.49 | 0.25 | 0.16 | 0 | 0 | 0.25 | |
Average | 0.55 | 0.57 | 0.45 | 0.56 | 0.48 | 0.55 | |
Resistance Order | 1 | 1 | 3 | 2 | 2 | 3 | |
9-Sep | T1 | 0.83 | 0.74 | 0.88 | 0.76 | 0.71 | 0.91 |
T2 | 0.62 | 0.81 | 0.65 | 0.82 | 0.69 | 0.77 | |
T3 | 0 | 0.05 | 0 | 0 | 0 | 0 | |
Average | 0.48 | 0.53 | 0.51 | 0.53 | 0.47 | 0.56 | |
Resistance Order | 2 | 2 | 1 | 3 | 3 | 1 | |
19-Sep | T1 | 0.54 | 0.48 | 0.45 | 0.71 | 0.5 | 0.52 |
T2 | 0.89 | 0.63 | 0.88 | 0.57 | 0.67 | 0.94 | |
T3 | 0.4 | 0.2 | 0.35 | 0.2 | 0.2 | 0.06 | |
Average | 0.61 | 0.44 | 0.56 | 0.49 | 0.46 | 0.5 | |
Resistance Order | 1 | 3 | 2 | 2 | 3 | 1 |
Tree Species | Stomatal Indicators | Leaf Tip | Leaf Middle | Leaf Base |
---|---|---|---|---|
S. oblata | SL | 22.20 ± 8.37 c | 29.84 ± 9.37 b | 35.18 ± 4.95 a |
P. cerasifera | 25.12 ± 3.38 | 22.90 ± 7.72 | 23.89 ± 4.28 | |
U. pumila | 20.46 ± 8.71 | 24.45 ± 7.68 | 23.28 ± 8.02 | |
S. oblata | SW | 4.13 ± 1.40 | 4.00 ± 1.28 | 5.80 ± 1.59 |
P. cerasifera | 5.25 ± 1.14 | 5.27 ± 1.86 | 5.66 ± 2.01 | |
U. pumila | 2.23 ± 1.24 b | 3.34 ± 1.39 | 3.63 ± 1.26 a | |
S. oblata | SA | 0.20 ± 0.07 a | 0.14 ± 0.04 c | 0.16 ± 0.03 b |
P. cerasifera | 0.21 ± 0.04 | 0.24 ± 0.08 | 0.23 ± 0.06 |
Forest Para | Changchun | Jilin | Siping | Liaoyuan | Tonghua | Baishan | Songyuan | Baicheng | Yanbian |
---|---|---|---|---|---|---|---|---|---|
FPAR | −0.62 (*) | −0.68 (*) | −0.59 (*) | −0.67 (*) | −0.66 (*) | −0.67 (*) | −0.55 (*) | −0.59 (*) | −0.78 (*) |
LAI | −0.56 (*) | −0.62 (*) | −0.56 (*) | −0.59 (*) | −0.58 (*) | −0.59 (*) | −0.51 (*) | −0.56 (*) | −0.72 (*) |
NDVI | −0.67 (*) | −0.72 (*) | −0.62 (*) | −0.71 (*) | −0.72 (*) | −0.73 (*) | −0.58 (*) | −0.62 (*) | −0.83 (*) |
Study | SO2 Emission Types | FPAR | LAI | NDVI |
---|---|---|---|---|
Jilin | industrial | −0.85 (*) | −0.86 (*) | −0.90 (*) |
domestic | 0.90 (*) | 0.86 (*) | 0.85 (*) | |
Liaoyuan | industrial | −0.69 | −0.75 | −0.78 |
domestic | −0.84 (*) | −0.90 (*) | −0.90 (*) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.; Bao, Y.; Liu, X.; Tong, Z.; Qing, S.; Bao, Y.; Zhang, J. Plant Ontogeny Strongly Influences SO2 Stress Resistance in Landscape Tree Species Leaf Functional Traits. Remote Sens. 2022, 14, 1857. https://doi.org/10.3390/rs14081857
Han A, Bao Y, Liu X, Tong Z, Qing S, Bao Y, Zhang J. Plant Ontogeny Strongly Influences SO2 Stress Resistance in Landscape Tree Species Leaf Functional Traits. Remote Sensing. 2022; 14(8):1857. https://doi.org/10.3390/rs14081857
Chicago/Turabian StyleHan, Aru, Yongbin Bao, Xingpeng Liu, Zhijun Tong, Song Qing, Yuhai Bao, and Jiquan Zhang. 2022. "Plant Ontogeny Strongly Influences SO2 Stress Resistance in Landscape Tree Species Leaf Functional Traits" Remote Sensing 14, no. 8: 1857. https://doi.org/10.3390/rs14081857