Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar
<p>Landslide susceptibility map [<a href="#B4-remotesensing-14-05822" class="html-bibr">4</a>] with relevant hotspots.</p> "> Figure 2
<p>The geographic location of the study area.</p> "> Figure 3
<p>Aerial photos of the emerged residential complex and monitored study area.</p> "> Figure 4
<p>Collage of images depicting the old retaining wall right before failure, and the damages that ensued on the industrial production hall after the slope failure.</p> "> Figure 5
<p>Collage of images depicting the newly constructed retaining wall and land improvement measures.</p> "> Figure 6
<p>Methodological flowchart.</p> "> Figure 7
<p>Map of the prior research study’s landslide susceptibility [<a href="#B4-remotesensing-14-05822" class="html-bibr">4</a>] (<b>a</b>) and of the study area (<b>b</b>); the twelve factors that have been examined as potential influencing factors for slope mass movement: altitude (<b>c</b>), slope (<b>d</b>), aspect (<b>e</b>), distance to settlements (<b>f</b>), roads (<b>g</b>), hydrography (<b>h</b>), wetness index (<b>i</b>), stream power index (<b>j</b>), land-use (<b>k</b>), geology (<b>l</b>), depth of fragmentation (<b>m</b>), and fragmentation density (<b>n</b>).</p> "> Figure 8
<p>Established local geodetic network.</p> "> Figure 9
<p>Obtained orthophoto with GCPs and CPs positioning and the instrumentation used.</p> "> Figure 10
<p>Obtained orthophoto with GPR profile locations and the instrumentation used.</p> "> Figure 11
<p>Displacement analysis on each axis, as well as overall spatial values.</p> "> Figure 12
<p>Surface movement rate from 2017 to 2019.</p> "> Figure 13
<p>GPR longitudinal profile from 2017 and 2019.</p> "> Figure 14
<p>The retaining wall subjected to slight rotation due to overall slope instability, with the displacements and values highlighted; GPR longitudinal profiles show changes in the depth layers of soil and rock. Note: the rotation is slightly exaggerated inside the left figure in order to have a better visualization of the process. The values recorded are relatively small and do not possess danger in the near future.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geological/Geotechnical Background and Methodological Approach
2.3. Bivariate Statistical Analysis (BSA)
2.4. Geodetic Network, Monitoring Control Points and Periodic Survey
2.5. UAV Monitoring
2.6. Ground Penetrating Radar Evaluation
3. Results
3.1. Results and Discussions following the Geodetic-Topographic Measurements
3.2. Results and Discussions following the 3D UAV Modeling
3.3. Results and Discussions following the GPR Investigation
4. Discussion
4.1. Geotechnical Assessment of the Displacements
4.2. Correlations between the Multi-Instrumental Monitoring Approach
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Station Point | Target Point | Hz | V | Instrument Height [m] | Prism Height [m] |
---|---|---|---|---|---|
S1 | S2 | 0.0000 | −1.0111 | 1.483 | 0.375 |
S4 | 98.3021 | 4.7390 | |||
S3 | 104.9508 | 4.6329 | |||
S2 | S3 | 0.0000 | 4.3460 | 1.564 | |
S4 | 2.4880 | 4.3887 | |||
S1 | 74.7849 | −0.5207 | |||
S3 | S1 | 0.0000 | −5.1108 | 1.457 | |
S4 | 14.3691 | −4.9647 | |||
S2 | 20.2641 | −4.8234 | |||
S4 | S1 | 0.0000 | −5.4919 | 1.595 | |
S2 | 29.4009 | −5.0995 | |||
S3 | 221.0153 | 3.3822 |
x | y | |
---|---|---|
S1 | 589,413.255 | 396,830.215 |
S2 | 589,414.650 | 396,734.405 |
x | y | |
---|---|---|
S3 | 589,694.527 | 396,856.253 |
S4 | 589,608.233 | 396,827.877 |
0 | 0 | 0 | 0 | −6 | ||
0 | 0 | 39,380 | 3264.595 | 25 | ||
−207.736 | 2244.131 | 0 | 0 | −19 | ||
−207.736 | 2244,131 | 39,380 | 3264.595 | 0 | ||
−832.497 | 1912.207 | 0 | 0 | −23 | ||
0 | 0 | −1287.564 | 2666.992 | 29 | ||
0 | 0 | 0 | 0 | −7 | ||
A= | −832.497 | 1912.207 | −1287.564 | 2666.992 | l= | 0 |
−207.736 | 2244.131 | 0 | 0 | 39 | ||
−2190,026 | 6656.940 | 2190.026 | −6656.940 | −78 | ||
−832.497 | 1912.207 | 0 | 0 | 38 | ||
−3230.259 | 10,813.278 | 2190.026 | −6656.940 | 0 | ||
0 | 0 | 39.380 | 3264.595 | 44 | ||
0 | 0 | −1287.564 | 2666.992 | 49 | ||
−2190.026 | 6656.940 | 2190.026 | −6656.940 | −93 | ||
−2190.026 | 6656.940 | 941.842 | −725.354 | 0 |
−0.006 | |
x= | 0.004 |
0.008 | |
−0.009 |
x | y | |
---|---|---|
S3 | 589,694.521 | 396,856.257 |
S4 | 589,608.241 | 396,827.868 |
S3 | ±0.010 | ±0.004 |
S4 | ±0.005 | ±0.002 |
Point | Elevation [m] |
---|---|
S2 | 323.830 |
S3 | 345.920 |
S4 | 339.870 |
6642.2 | 0,0 | 0,0 | 26 | ||
0.0 | 0,0 | 3246.7 | −67 | ||
0.0 | 2241.9 | 0.0 | −46 | ||
−2075.9 | 2075.9 | 0.0 | 63 | ||
−2947.4 | 0.0 | 2947.4 | 23 | ||
A= | −6643.5 | 0.0 | 0.0 | l= | 32 |
0.0 | −2239.3 | 0.0 | −82 | ||
0.0 | −6966.3 | 6966.3 | −238 | ||
2073.6 | −2073.6 | 0.0 | −1 | ||
0.0 | 0.0 | −3240.5 | 45 | ||
2942.5 | 0.0 | −2942.5 | −10 | ||
0.0 | 6989.1 | −6989.1 | −1 |
0.003 | |
x= | −0.009 |
0.008 |
Point | Elevation [m] | |
---|---|---|
S2 | 323.833 | ±0.007 |
S3 | 345.911 | ±0.011 |
S4 | 339.878 | ±0.010 |
Station Point | Target Point | Hz | V | Instrument Height [m] | Prism Height [m] |
---|---|---|---|---|---|
S1 | S2 | 0.0000 | −1.0991 | 1.625 | 0.375 |
S4 | 98.3072 | 4.6939 | |||
S3 | 104.9498 | 4.6008 | |||
S2 | S3 | 0.0000 | 4.3409 | 1.641 | |
S4 | 2.4934 | 4.3762 | |||
S1 | 74.7852 | −0.5641 | |||
S3 | S1 | 0.0000 | −5.1303 | 1.533 | |
S4 | 14.3565 | −5.0288 | |||
S2 | 20.2645 | −4.8361 | |||
S4 | S1 | 0.0000 | −5.4862 | 1.597 | |
S2 | 29.3988 | −5.0991 | |||
S3 | 220.9997 | 3.3761 |
Station Point | Target Point | Hz | V | Instrument Height [m] | Prism Height [m] |
---|---|---|---|---|---|
S1 | S2 | 0.0000 | −1.0710 | 1.584 | 0.375 |
S4 | 98.3059 | 4.6907 | |||
S3 | 104.9509 | 4.6111 | |||
S2 | S3 | 0.0000 | 4.3484 | 1.606 | |
S4 | 2.4914 | 4.3846 | |||
S1 | 74.7842 | −0.5516 | |||
S3 | S1 | 0.0000 | −5.1259 | 1.496 | |
S4 | 14.3607 | −5.0111 | |||
S2 | 20.2635 | −4.8291 | |||
S4 | S1 | 0.0000 | −5.4732 | 1.551 | |
S2 | 29.4003 | −5.0865 | |||
S3 | 221.0067 | 3.4075 |
Stage 0 | Stage 1 | Stage 2 | ||
---|---|---|---|---|
S3 | X | 589,694.521 ± 0.010 | 589,694.520 ± 0.009 | 589,694.524 ± 0.006 |
Y | 396,856.257 ± 0.004 | 396,856.255 ± 0.003 | 396,856.261 ± 0.002 | |
S4 | X | 589,608.241 ± 0.005 | 589,608.245 ± 0.004 | 589,608.240 ± 0.003 |
Y | 396,827.868 ± 0.002 | 396,827.871 ± 0.002 | 396,827.866 ± 0.001 |
Stage 0 | Stage 1 | Stage 2 | |
---|---|---|---|
S2 | 323.833 ± 0.007 | 323.829 ± 0.005 | 323.835 ± 0.005 |
S3 | 345.911 ± 0.011 | 345.918 ± 0.008 | 345.919 ± 0.008 |
S4 | 339.878 ± 0.010 | 339.880 ± 0.007 | 339.874 ± 0.007 |
References
- Corpade, C.; Man, T.; Petrea, D.; Corpade, A.-M.; Moldovan, C. Changes in landscape structure induced by transportation projects in Cluj-Napoca periurban area using GIS. Carpathian J. Earth Environ. Sci. 2014, 9, 177–184. [Google Scholar]
- Dolean, B.-E.; Bilașco, Ș.; Petrea, D.; Moldovan, C.; Vescan, I.; Roșca, S.; Fodorean, I. Evaluation of the Built-Up Area Dynamics in the First Ring of Cluj-Napoca Metropolitan Area, Romania by Semi-Automatic GIS Analysis of Landsat Satellite Images. Appl. Sci. 2020, 10, 7722. [Google Scholar] [CrossRef]
- Cebotari, S.; Cristea, M.; Moldovan, C.; Zubașcu, F. Renewable Energy’s Impact on Rural Development in Northwestern Romania. Energy Sustain. Dev. 2017, 37, 110–123. [Google Scholar] [CrossRef]
- Sestras, P.; Bilasco, S.; Roşca, S.; Naș, S.; Bondrea, M.; Gâlgău, R.; Vereş, I.; Salagean, T.; Spalevic, V.; Cimpeanu, S. Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area. Sustainability 2019, 11, 1362. [Google Scholar] [CrossRef] [Green Version]
- Sestras, P.; Bilașco, Ș.; Roșca, S.; Dudic, B.; Hysa, A.; Spalević, V. Geodetic and UAV Monitoring in the Sustainable Management of Shallow Landslides and Erosion of a Susceptible Urban Environment. Remote Sens. 2021, 13, 385. [Google Scholar] [CrossRef]
- Bilaşco, Ş.; Roşca, S.; Fodorean, I.; Vescan, I.; Filip, S.; Petrea, D. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models. Front. Earth Sci. 2018, 12, 311–324. [Google Scholar]
- Bălteanu, D.; Micu, M.; Jurchescu, M.; Malet, J.-P.; Sima, M.; Kucsicsa, G.; Dumitrică, C.; Petrea, D.; Mărgărint, M.C.; Bilaşco, S.T.; et al. National-scale landslide susceptibility map of Romania in a European methodological framework. Geomorphology 2020, 371, 107432. [Google Scholar] [CrossRef]
- Kerekes, A.H.; Poszet, S.L.; Andrea, G.Á.L. Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania. Rev. Geomorfol. 2018, 20, 130–146. [Google Scholar] [CrossRef]
- Kerekes, A.H.; Poszet, S.L.; Baciu, L.C. Investigating land surface deformation using InSAR and GIS techniques in Cluj–Napoca city’s most affected sector by urban sprawl (Romania). Rev. Geomorfol. 2020, 22, 43–59. [Google Scholar] [CrossRef]
- Roşca, S.; Bilaşco, Ş.; Petrea, D.; Fodorean, I.; Vescan, I.; Filip, S. Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania). Nat. Hazards 2015, 77, 1573–1592. [Google Scholar]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and mitigation. Chapter 3-Landslide types and processes. Transp. Res. Board Spec. Rep. 1996, 247, 36–75. [Google Scholar]
- Artese, S.; Perrelli, M. Monitoring a Landslide with High Accuracy by Total Station: A DTM-Based Model to Correct for the Atmospheric Effects. Geosciences 2018, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef] [Green Version]
- Stiros, S.C.; Vichas, C.; Skourtis, C. Landslide Monitoring Based on Geodetically Derived Distance Changes. J. Surv. Eng. 2004, 130, 156–162. [Google Scholar] [CrossRef]
- Tsaia, Z.; Youa, G.J.Y.; Leea, H.Y.; Chiub, Y.J. Use of a total station to monitor post-failure sediment yields in landslide sites of the Shihmen reservoir watershed. Geomorphology 2012, 139–140, 438–451. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; De Jong, S.M. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawabdeh, A.; Moussa, A.; Foroutan, M.; El-Sheimy, N.; Habib, A. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications. Sensors 2017, 17, 2378. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Akca, D. Photogrammetric monitoring of an artificially generated shallow landslide. Photogramm. Rec. 2013, 28, 178–195. [Google Scholar] [CrossRef] [Green Version]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Dewitte, O.; Jasselette, J.C.; Cornet, Y.; Van Den Eeckhaut, M.; Collignon, A.; Poesen, J.; Demoulin, A. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng. Geol. 2008, 99, 11–22. [Google Scholar] [CrossRef]
- Görüm, T. Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data. Eng. Geol. 2019, 258, 105155. [Google Scholar] [CrossRef]
- Syzdykbayev, M.; Karimi, B.; Karimi, H.A. Persistent homology on LiDAR data to detect landslides. Remote Sens. Environ. 2020, 246, 111816. [Google Scholar] [CrossRef]
- Bernat Gazibara, S.; Krkač, M.; Mihalić Arbanas, S. Landslide inventory mapping using LiDAR data in the City of Zagreb (Croatia). J. Maps 2019, 15, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Peduto, D.; Oricchio, L.; Nicodemo, G.; Crosetto, M.; Ripoll, J.; Buxó, P.; Janeras, M. Investigating the kinematics of the unstable slope of Barbera de la Conca (Catalonia, Spain) and the effects on the exposed facilities by GBSAR and multi-source conventional monitoring. Landslides 2021, 18, 457–469. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. Int. J. Remote Sens. 2016, 37, 1190–1209. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Landslide volumetric analysis using cartosat-1-derived dems. IEEE Geosci. Remote Sens. Lett. 2010, 7, 582–586. [Google Scholar] [CrossRef]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): The PSI-based matrix approach. Landslides 2012, 10, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Catani, F.; Tofani, V.; Casagli, N. Quantitative hazard and risk assessment for slow-moving landslides from persistent Scatterer interferometry. Landslides 2014, 11, 685–696. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Didehban, K.; Rasouli, H.; Kamran, K.V.; Feizizadeh, B.; Blaschke, T. An Application of Sentinel-1, Sentinel-2, and GNSS Data for Landslide Susceptibility Mapping. ISPRS Int. J. Geo Inf. 2020, 9, 561. [Google Scholar] [CrossRef]
- Simeoni, L.; Ferro, E.; Tombolato, S. Reliability of Field Measurements of Displacements in Two Cases of Viaduct-Extremely Slow Landslide Interactions. Eng. Geol. Soc. Territ. 2015, 2, 125–128. [Google Scholar]
- Afeni, T.B.; Cawood, F.T. Slope Monitoring using Total Station: What are the Challenges and How Should These be Mitigated? S. Afr. J. Geomat. 2013, 2, 41–53. [Google Scholar]
- Sestras, P. Methodological and On-Site Applied Construction Layout Plan with Batter Boards Stake-Out Methods Comparison: A Case Study of Romania. Appl. Sci. 2021, 11, 4331. [Google Scholar] [CrossRef]
- Salagean, T.; Rusu, T.; Onose, D.; Farcas, R.; Duda, B.; Sestras, P. The use of laser scanning technology in land monitoring of mining areas. Carpathian J. Earth Environ. Sci. 2016, 11, 565573. [Google Scholar]
- Song, Y.; Wu, P. Earth Observation for Sustainable Infrastructure: A Review. Remote Sens. 2021, 13, 1528. [Google Scholar] [CrossRef]
- Sestras, P.; Roșca, S.; Bilașco, Ș.; Naș, S.; Buru, S.M.; Kovacs, L.; Spalević, V.; Sestras, A.F. Feasibility Assessments Using Unmanned Aerial Vehicle Technology in Heritage Buildings: Rehabilitation-Restoration, Spatial Analysis and Tourism Potential Analysis. Sensors 2020, 20, 2054. [Google Scholar] [CrossRef] [Green Version]
- Solazzo, D.; Sankey, J.B.; Sankey, T.T.; Munson, S.M. Mapping and measuring aeolian sand dunes with photogrammetry and LiDAR from unmanned aerial vehicles (UAV) and multispectral satellite imagery on the Paria Plateau, AZ, USA. Geomorphology 2018, 319, 174–185. [Google Scholar] [CrossRef]
- Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Chirila, C. Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution. Remote Sens. 2020, 12, 876. [Google Scholar] [CrossRef] [Green Version]
- Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Diac, M. 3D Modeling of Urban Area Based on Oblique UAS Images—An End-to-End Pipeline. Remote Sens. 2022, 14, 422. [Google Scholar] [CrossRef]
- Glira, P.; Pfeifer, N.; Mandlburger, G. Hybrid Orientation of Airborne Lidar Point Clouds and Aerial Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Bandini, F.; Sunding, T.P.; Linde, J.; Smith, O.; Jensen, I.K.; Köppl, C.J.; Bauer-Gottwein, P. Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: Comparison of radar altimetry, LIDAR and photogrammetry techniques. Remote Sens. Environ. 2020, 237, 111487. [Google Scholar] [CrossRef]
- Cramer, M.; Haala, N.; Laupheimer, D.; Mandlburger, G.; Havel, P. Ultra-High Precision UAV-Based Lidar and Dense Image Matching. In Proceedings of the ISPRS TC I Mid-term Symposium “Innovative Sensing—From Sensors to Methods and Applications”, Karlsruhe, Germany, 10–12 October 2018. [Google Scholar]
- Pirasteh, S.; Li, J. Landslides investigations from geoinformatics perspective: Quality, challenges, and recommendations. Geomatics, Nat. Hazards Risk 2017, 8, 448–465. [Google Scholar] [CrossRef] [Green Version]
- Lissak, C.; Maquaire, O.; Malet, J.P.; Lavigne, F.; Virmoux, C.; Gomez, C.; Davidson, R. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Nat. Hazards Earth Syst. Sci. 2015, 15, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Tan, W.; Huang, P.; Xu, W.; Qi, Y.; Zhang, M. Landslide Prediction Method Based on a Ground-Based Micro-Deformation Monitoring Radar. Remote Sens. 2020, 12, 1230. [Google Scholar] [CrossRef]
- Hussain, Y.; Cardenas-Soto, M.; Martino, S.; Moreira, C.; Borges, W.; Hamza, O.; Prado, R.; Uagoda, R.; Rodríguez-Rebolledo, J.; Silva, R.C.; et al. Multiple Geophysical Techniques for Investigation and Monitoring of Sobradinho Landslide, Brazil. Sustainability 2019, 11, 6672. [Google Scholar] [CrossRef] [Green Version]
- Verbovšek, T.; Košir, A.; Teran, M.; Zajc, M.; Popit, T. Volume determination of the Selo landslide complex (SW Slovenia): Integrating field mapping, ground penetrating radar and GIS approaches. Landslides 2017, 14, 1265–1274. [Google Scholar] [CrossRef]
- Barnhardt, W.A.; Kayen, R.E. Radar structure of earthquake-induced, coastal landslides in Anchorage, Alaska. Environ. Geosci. 2000, 7, 38–45. [Google Scholar] [CrossRef]
- Bichler, A.; Bobrowsky, P.; Best, M.; Douma, M.; Hunter, J.; Calvert, T.; Burns, R. Three-dimensional mapping of a landslide using a multi-geophysical approach: The Quesnel Forks landslide. Landslides 2004, 1, 29–40. [Google Scholar] [CrossRef]
- Sass, O.; Bell, R.; Glade, T. Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 2008, 93, 89–103. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 2013, 10, 611–622. [Google Scholar] [CrossRef]
- Kadioglu, S.; Ulugergerli, E.U. Imaging karstic cavities in transparent 3D volume of the GPR data set in Akkopru dam, Mugla, Turkey. Nondestruct. Test. Eval. 2012, 27, 263–271. [Google Scholar] [CrossRef]
- Kannaujiya, S.; Chattoraj, S.L.; Jayalath, D.; Bajaj, K.; Podali, S.; Bisht, M.P.S. Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat. Hazards 2019, 97, 1191–1208. [Google Scholar] [CrossRef]
- Şerban, G.; Rus, I.; Vele, D.; Breţcan, P.; Alexe, M.; Petrea, D. Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: Case study in the north-east of Apuseni Mountains, Transylvania. Nat. Hazards 2016, 82, 1817–1832. [Google Scholar] [CrossRef]
- Hysa, A.; Spalevic, V.; Dudic, B.; Roșca, S.; Kuriqi, A.; Bilașco, Ș.; Sestras, P. Utilizing the Available Open-Source Remotely Sensed Data in Assessing the Wildfire Ignition and Spread Capacities of Vegetated Surfaces in Romania. Remote Sens. 2021, 13, 2737. [Google Scholar] [CrossRef]
- Matei, I.; Pacurar, I.; Rosca, S.; Bilasco, S.; Sestras, P.; Rusu, T.; Jude, E.T.; Tăut, F.D. Land Use Favourability Assessment Based on Soil Characteristics and Anthropic Pollution. Case Study Somesul Mic Valley Corridor, Romania. Agronomy 2020, 10, 1245. [Google Scholar] [CrossRef]
- Fîrțală-Cioncuț, A.; Bilașco, S.; Fodorean, I.; Roșca, S.; Vescan, I. Identification and evaluation of the risk induced by landslides based on G.I.S. models of spatial analysis. Case study: Bicazu Ardelean, Romania. Nova Geodesia 2022, 3, 52. [Google Scholar] [CrossRef]
- Jaedicke, C.; Van Den Eeckhaut, M.; Nadim, F.; Hervás, J.; Kalsnes, B.; Vangelsten, B.V.; Smith, J.T.; Tofani, V.; Ciurean, R.; Winter, M.G. Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull. Eng. Geol. Environ. 2014, 73, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Jebur, M.N.; Pradhan, B.; Shafri, H.Z.M.; Yusoff, Z.M.; Tehrany, M.S. An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications. Geosci. Model Dev. 2015, 8, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method. ISPRS Int. J. Geo Inf. 2014, 3, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Vakhshoori, V.; Zare, M. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat. Nat. Hazards Risk 2018, 9, 249–266. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, L.; Ciurleo, M.; Gullà, G. Shallow Landslide Susceptibility Assessment in Granitic Rocks Using Gis-Based Statistical Methods: The Contribution of the Weathering Grade Map. Landslides 2018, 15, 1127–1142. [Google Scholar] [CrossRef]
- Ciurleo, M.; Cascini, L.; Calvello, M. A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng. Geol. 2017, 223, 71–81. [Google Scholar] [CrossRef]
- Pelzer, H. Zur Analyse Geodatischer Deformations-Messungen; Verlag der Bayer. Akad. d. Wiss.: Munchen, Germany, 1971; Volume 164. [Google Scholar]
- Baarda, W. A Testing Procedure for Use in Geodetic Networks; Rijkscommissie Voor Geodesie: Delft, The Netherlands, 1968; Volume 2. [Google Scholar]
- Chrzanowski, A. Optimization of the breakthrough accuracy in tunneling surveys. Can. Surv. 1981, 35, 5–16. [Google Scholar] [CrossRef]
- Chrzanowski, A.; Chen, Y.; Romero, P.; Secord, J.M. Integration of geodetic and geotechnical deformation surveys in the geosciences. Tectonophysics 1986, 130, 369–383. [Google Scholar] [CrossRef]
- Kersten, T.; Kobe, M.; Gabriel, G.; Timmen, L.; Schön, S.; Vogel, D. Geodetic monitoring of sub erosion-induced subsidence processes in urban areas. J. Appl. Geod. 2017, 11, 21–29. [Google Scholar]
- Hassan, K.M.Z. Comparative evaluation among various robust estimation methods in deformation analysis. Spat. Inf. Res. 2016, 24, 485–492. [Google Scholar] [CrossRef]
- Bilașco, Ș.; Hognogi, G.-G.; Roșca, S.; Pop, A.-M.; Iuliu, V.; Fodorean, I.; Marian-Potra, A.-C.; Sestras, P. Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins. Remote Sens. 2022, 14, 2481. [Google Scholar] [CrossRef]
- Akturk, E.; Altunel, A.O. Accuracy assesment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement 2019, 136, 382–386. [Google Scholar] [CrossRef]
- Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; Zhang, Z.; Cheng, W. Analysis of the development of an erosion gully in an open-cast coal mine dump during a winter freeze-thaw cycle by using low-cost UAVs. Remote Sens. 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Thomasson, J.A.; Xiang, Y.; Gharakhani, H.; Yadav, P.K.; Rooney, W.L. Multifunctional Ground Control Points with a Wireless Network for Communication with a UAV. Sensors 2019, 19, 2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lendzioch, T.; Langhammer, J.; Jenicek, M. Estimating Snow Depth and Leaf Area Index Based on UAV Digital Photogrammetry. Sensors 2019, 19, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okeson, T.J.; Barrett, B.J.; Arce, S.; Vernon, C.A.; Franke, K.W.; Hedengren, J.D. Achieving Tiered Model Quality in 3D Structure from Motion Models Using a Multi-Scale View-Planning Algorithm for Automated Targeted Inspection. Sensors 2019, 19, 2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cignetti, M.; Godone, D.; Wrzesniak, A.; Giordan, D. Structure from Motion Multisource Application for Landslide Characterization and Monitoring: The Champlas du Col Case Study, Sestriere, North-Western Italy. Sensors 2019, 19, 2364. [Google Scholar] [CrossRef] [Green Version]
- Leary, R.J.; Hensleigh, J.W.; Wheaton, D.J.M.; Demeurichy, K.D. Recommended Geomorphic Change Detection Procedures for Repeat TLS Surveys from Hells Canyon, Idaho; Utah State University: Logan, UT, USA, 2012. [Google Scholar]
- Xie, P.; Wen, H.; Xiao, P. Evaluation of ground-penetrating radar (GPR) and geology survey for slope stability study in mantled karst region. Environ. Earth Sci. 2018, 77, 122. [Google Scholar] [CrossRef]
- Hallal, N.; Yelles Chaouche, A.; Hamai, L.; Lamali, A.; Dubois, L.; Mohammedi, Y.; Hamidatou, M.; Djadia, L.; Abtout, A. Spatiotemporal evolution of the El Biar landslide (Algiers): New field observation data constrained by ground-penetrating radar investigations. Bull. Eng. Geol. Environ. 2019, 78, 5653–5670. [Google Scholar] [CrossRef]
- Costea, A.; Bilasco, S.; Irimus, I.-A.; Rosca, S.; Vescan, I.; Fodorean, I.; Sestras, P. Evaluation of the Risk Induced by Soil Erosion on Land Use. Case Study: Guruslău Depression. Sustainability 2022, 14, 652. [Google Scholar] [CrossRef]
- Bilașco, Ș.; Roșca, S.; Vescan, I.; Fodorean, I.; Dohotar, V.; Sestras, P. A GIS-Based Spatial Analysis Model Approach for Identification of Optimal Hydrotechnical Solutions for Gully Erosion Stabilization. Case Study. Appl. Sci. 2021, 11, 4847. [Google Scholar] [CrossRef]
- Spalevic, V.; Barovic, G.; Vujacic, D.; Curovic, M.; Behzadfar, M.; Djurovic, N.; Dudic, B.; Billi, P. The Impact of Land Use Changes on Soil Erosion in the River Basin of Miocki Potok, Montenegro. Water 2020, 12, 2973. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L.; Spalevic, V.; Skataric, G. Estimation of Sediment Yield and Maximum Outflow Using the IntErO Model in the Sarada River Basin of Nepal. Water 2019, 11, 952. [Google Scholar] [CrossRef] [Green Version]
- Nikolic, G.; Spalevic, V.; Curovic, M.; Khaledi Darvishan, A.; Skataric, G.; Pajic, M.; Kavian, A.; Tanaskovik, V. Variability of Soil Erosion Intensity Due to Vegetation Cover Changes: Case Study of Orahovacka Rijeka, Montenegro. Not. Bot. Horti Agrobot. Cluj Napoca 2018, 47, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Gocić, M.; Dragićević, S.; Radivojević, A.; Martić Bursać, N.; Stričević, L.; Đorđević, M. Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia. Agriculture 2020, 10, 345. [Google Scholar] [CrossRef]
Flight Plan Properties | |
---|---|
Aircraft | DJI Phantom 4 Pro |
Flight Date | May 2017/May 2019 |
Mapping Flight Speed | 4 m/s |
Sensor | 4K RGB camera with 20 MP; f/2.8–f/11, 24 mm lens |
Fly Height Ground Level (m) | 40 m |
Image Forward Overlap (%) | 85% |
Image Side Overlap (%) | 75% |
Image Overlap | >9 |
Number of Images Captured | 456 (crosshatch 3D flight pattern) |
Covered Area vs Area of Interest [m2] | ~22,000/~2500 |
Number of GCPs | 9 (placed inside/surrounding the area of interest) |
Ground Resolution | ~1.02 cm/px |
RMSE | 0.019 m XY and 0.022 Z |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sestras, P.; Bilașco, Ș.; Roșca, S.; Veres, I.; Ilies, N.; Hysa, A.; Spalević, V.; Cîmpeanu, S.M. Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sens. 2022, 14, 5822. https://doi.org/10.3390/rs14225822
Sestras P, Bilașco Ș, Roșca S, Veres I, Ilies N, Hysa A, Spalević V, Cîmpeanu SM. Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sensing. 2022; 14(22):5822. https://doi.org/10.3390/rs14225822
Chicago/Turabian StyleSestras, Paul, Ștefan Bilașco, Sanda Roșca, Ioel Veres, Nicoleta Ilies, Artan Hysa, Velibor Spalević, and Sorin M. Cîmpeanu. 2022. "Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar" Remote Sensing 14, no. 22: 5822. https://doi.org/10.3390/rs14225822
APA StyleSestras, P., Bilașco, Ș., Roșca, S., Veres, I., Ilies, N., Hysa, A., Spalević, V., & Cîmpeanu, S. M. (2022). Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sensing, 14(22), 5822. https://doi.org/10.3390/rs14225822