Tracking Deforestation, Drought, and Fire Occurrence in Kutai National Park, Indonesia
<p>Land use designations and population density within and around Kutai National Park of East Kalimantan, Indonesia. Density displayed as estimated number of people per 250 m × 250 m grid cell [<a href="#B22-remotesensing-14-05630" class="html-bibr">22</a>] Southeastern and northeastern population centers represent the respective cities of Bontang and Sangatta.</p> "> Figure 2
<p>Classified areas of forest loss within Kutai National Park (<b>A</b>) and the Greater Mentoko Area [GMA] (<b>B</b>) between 2001–2021 and corresponding area estimates (<b>C</b>) as detected by the Hansen Global Forest Change (v1.9) dataset. Only years post-2013 are discretized annually due to higher detection accuracy of the 2013–2021 period. Tree cover with >70% canopy closure in year 2000 are depicted in green. Images of an illegal logging site (<b>D</b>) and the resultant canopy opening (<b>E</b>) in the GMA from 2018 by RG.</p> "> Figure 3
<p>Validation of the Hansen Global Forest Change (HGFC; v1.9) product for the years 2017–2020 over two sample regions (<b>A</b>,<b>B</b>) in northeastern KNP using (1) high-resolution Planet/NICFI satellite imagery (Reference dataset) and (2) the Forest Canopy Disturbance Monitoring Tool (FCDM Tool) developed by [<a href="#B26-remotesensing-14-05630" class="html-bibr">26</a>].</p> "> Figure 4
<p>MCD64A1 (left): location (<b>A</b>) and annual estimates (<b>B</b>) of detected burned area (BA) within KNP between 2002–2021. VIIRS (right): active fire detections within and outside the perimeters of detected BA in KNP between 2015–2016 (<b>C</b>) and cumulative active fire detections across days of the year (DOY) between 2012–2021 within KNP (<b>D</b>).</p> "> Figure 5
<p>Validation of MCD64A1 burned area in 2015 over northwestern (<b>A</b>), southeastern (<b>B</b>), and southwestern (<b>C</b>) sample regions of Kutai National Park using differenced normalized burn ratio (dNBR) of pre- and post-fire Landsat 8 composite imagery. In the bottom right chart, the spatial extent of the MCD64A1-detected burned areas is compared against the top three classes of dNBR burn severity over each sample region.</p> "> Figure 6
<p>Per-pixel averages (1997–2021) of total rainfall (<b>A</b>) and daily average rainfall vs. burned area in 2015 (<b>B</b>) during the standard fire season (August–November) within Kutai National Park. Rainfall estimates from CHIRPS Pentad; burned area estimates from MCD64A1.</p> "> Figure 7
<p>Estimates of monthly burned area (MCD64A1) and three-monthly total precipitation (CHIRPS) within Kutai National Park, as well as the Oceanic Niño Index (ONI) between 2002–2021, with phases of El Niño in orange and La Niña in green. Green bubbles (top) represent annual estimates of forest loss within KNP (HGFC v1.9) between 2013–2021 in square kilometers (aligned to Jan 1 of the detection year). The reported fire risk threshold for this region of 4–5 mm/day (360–450 mm/3 month period) is denoted by the grey band.</p> "> Figure A1
<p>Differences in detection methodology between the three forest loss datasets used in this study, including the reference dataset (Planet/NICFI imagery), FCDM Tool [<a href="#B26-remotesensing-14-05630" class="html-bibr">26</a>], and the Hansen Global Forest Change product [<a href="#B23-remotesensing-14-05630" class="html-bibr">23</a>].</p> "> Figure A2
<p>Comparison of rainfall estimates (CHIRPS) and rain gauge observations (RG) at the Bendili research station in Kutai National Park for annual, September, and October time periods between 2010–2018. Bendili RG observations are courtesy of the Orangutan Kutai Project.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Hansen Global Forest Change (HGFC)
2.2.2. MCD64A1 Burned Area
2.2.3. Climate Hazard InfraRed Precipitation and Station (CHIRPS)
3. Results and Discussion
3.1. Forest Loss within KNP
3.2. Hotspot Mapping within KNP
3.3. Climatic Influences of Fire and Forest Loss within KNP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Soehartono, T.; Mardiastuti, A. The voice of National Parks in Kalimantan, Indonesia: Searching the Truth of Thirty Year National Park Development; Nata Samastha Foundation: Bogor, Indonesia, 2013; p. 244. [Google Scholar]
- Utami-Atmoko, S.; Traylor-Holzer, K.; Rifqi, M.A.; Siregar, P.G.; Achmad, B.; Priadjati, A.; Husson, S.; Wich, S.; Hadisiswoyo, P.; Saputra, F.; et al. Orangutan Population and Habitat Viability Assessment: Final Report; IUCN/SSC Conservation Breeding Specialist Group: Bogor, Indonesia, 2017; p. 121. [Google Scholar]
- Field, R.D.; van der Werf, G.R.; Fanin, T.; Fetzer, E.J.; Fuller, R.; Jethva, H.; Levy, R.; Livesey, N.J.; Luo, M.; Torres, O.; et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. USA 2016, 113, 9204–9209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegert, F.; Hoffmann, A.A. The 1998 forest fires in East Kalimantan (Indonesia): A quantitative evaluation using high resolution, mulitemporal ERS-2 SAR Images and NOAA-AVHRR hotspot data. Remote Sens. Environ. 2000, 72, 64–77. [Google Scholar] [CrossRef]
- Hadiprakarsa, Y.Y.; Rianta, E.; Christy, L.; Siregar, P.; Kitchener, D.; Hartman, P. PSSF (Private Sector Sustainability Facility) Site Threats: Evaluation of Threats to Orangutan and Priority Interventions to Abate These Threats at PSSF Focused Sites in North Sumatra and East Kalimantan; Report for the United States Agency for International Development (USAID); USAID: Washington, DC, USA, 2009; 32p. [Google Scholar]
- Guild, R. Threats to wild orangutans: A case study in Kutai National Park of East Kalimantan, Indonesia. Master’s Thesis, York University, Toronto, ON, Canada, 2019; p. 79. [Google Scholar]
- Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021, 10, 1–57. [Google Scholar] [CrossRef] [PubMed]
- Hasanah, N.I. Perubahan penutupan lahan di Taman Nasional Kutai provinsi Kalimantan Timur (Land cover change in Kutai National Park of East Kalimantan province). Ph.D. Thesis, Bogor Agricultural University, Bogor City, Indonesia, 2011; p. 68. [Google Scholar]
- BTNK (Balai Taman National Kutai). Statistik Taman Nasional Kutai: Tahun 2017 (Kutai National Park Statistics: 2017); BTNK (Balai Taman National Kutai): Bontang, Indonesia, 2017; p. 135. [Google Scholar]
- BTNK (Balai Taman National Kutai). Statistik Taman Nasional Kutai: Tahun 2016; BTNK (Balai Taman National Kutai): Bontang, Indonesia, 2016; p. 173. [Google Scholar]
- Rist, L.; Feintrenie, L.; Levang, P. The livelihood impacts of oil palm: Smallholders in Indonesia. Biodivers. Conserv. 2010, 19, 1009–1024. [Google Scholar] [CrossRef]
- Cahyadi, E.R.; Waibel, H. Contract farming and vulnerability to poverty among oil palm smallholders in Indonesia. J. Dev. Stud. 2016, 52, 681–695. [Google Scholar] [CrossRef]
- Naylor, R.L.; Higgins, M.M.; Edwards, R.B.; Falcon, W.P. Decentralization and the environment: Assessing smallholder oil palm development in Indonesia. Ambio 2019, 48, 1195–1208. [Google Scholar] [CrossRef]
- Schweithelm, J.; Glover, D. Causes and impacts of the fires. In Indonesia’s Fires and Haze: The Cost of Catastrophe; Glover, D., Jessup, T., Eds.; Institute of Southeast Asian Studies: Singapore, Singapore, 2006; pp. 1–13. [Google Scholar]
- Goldammer, J.G. Natural rain forest fires in eastern Borneo during the Pleistocene and Holocene. Naturwissenschaften 1989, 76, 518–520. [Google Scholar] [CrossRef]
- Wirawan, N. Kutai National Park Management Plan 1985–1990; World Wildlife Fund (WWF): Bogor, Indonesia, 1985. [Google Scholar]
- Leighton, M.; Wirawan, N. Catastrophic drought and fire in Bornean tropical rain forest associated with the 1982–1983 ENSO event. In Tropical Rain Forests and the World Atmosphere; Prance, G., Ed.; Westview Press: Boulder, CO, USA, 1986; pp. 75–102. [Google Scholar]
- Mori, T. Effects of droughts and forest fires on dipterocarp forests in East Kalimantan. In Rainforest Ecosystems of East Kalimantan; Guhardja, E., Fatawi, M., Sutisna, M., Mori, T., Ohta, S., Eds.; Springer: Tokyo, Japan, 2000; pp. 29–42. [Google Scholar]
- Slik, J.F.W.; Verburg, R.W.; Keßler, P.J.A. Effects of fire and selective logging on tree species composition of lowland dipterocarp forest in East Kalimantan, Indonesia. Biodivers. Conserv. 2002, 11, 85–98. [Google Scholar] [CrossRef]
- Russon, A.E.; Kuncoro, P.; Ferisa, A. Orangutan behavior in Kutai National Park after drought and fire damage: Adjustments to short- and long-term natural forest regeneration. Am. J. Primatol. 2015, 77, 1276–1289. [Google Scholar] [CrossRef]
- Pan, X.; Chin, M.; Ichoku, C.M.; Field, R.D. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016. J. Geophisical Res. Atmos. 2018, 123, 7974–7988. [Google Scholar]
- Schiavina, M.; Freire, S.; MacManus, K. GHS-POP R2019A—GHS Population Grid Multitemporal (1975–1990–2000–2015). European Commission, Joint Research Centre (JRC) [Dataset]. 2019. Available online: https://doi.org/10.2905/0C6B9751-A71F-4062-830B-43C9F432370F (accessed on 18 September 2022).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat analysis ready data for global land cover and land cover change mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.; Saah, D.; Tenneson, K.; Poortinga, A.; Aekakkararungroj, A.; et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000-2017 Landsat time-series. Remote Sens. Environ. 2019, 232, 111278. [Google Scholar] [CrossRef]
- Langner, A.; Miettinen, J.; Kukkonen, M.; Vancutsem, C.; Simonetti, D.; Vieilledent, G.; Verhegghen, A.; Gallego, J.; Stibig, H.-J. Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen Rain Forests: A Test Case in Continental Southeast Asia. Remote Sens. 2018, 10, 544. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Hall, J.V.; Argueta, F.; Giglio, L. Validation of MCD64A1 and FireCCI51 cropland burned area mapping in Ukraine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102443. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z. Assessing the Accuracy of MODIS MCD64A1 C6 and FireCCI51 Burned Area Products in Mediterranean Ecosystems. Remote Sens. 2022, 14, 602. [Google Scholar] [CrossRef]
- Liu, T.; Marlier, M.E.; Karambelas, A.; Jain, M.; Singh, S.; Singh, M.K.; Gautam, R.; DeFries, R.S. Missing emissions from post-monsoon agricultural fires in northwestern India: Regional limitations of MODIS burned area and active fire products. Environ. Res. Commun. 2019, 1, 011007. [Google Scholar] [CrossRef]
- Liu, T.; Mickley, L.J.; Marlier, M.E.; DeFries, R.S.; Khan, M.F.; Latif, M.T.; Karambelas, A. Diagnosing spatial biases and uncertainties in global fire emissions inventories: Indonesia as regional case study. Remote. Sens. Environ. 2020, 237, 111557. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Sloan, S.; Tacconi, L.; Cattau, M.E. Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitig. Adapt. Strat. Glob. Chang. 2021, 26, 1–30. [Google Scholar] [CrossRef]
- Petersen, R.; Askenov, D.; Esipova, E.; Goldman, E.; Harris, N.; Kuksina, N.; Kurakina, I.; Loboda, T.; Manisha, A.; Sargent, S.; et al. Mapping Tree Plantations with Multispectral Imagery: Preliminary Results for Seven Tropical Countries; World Resources Institute: Washington, DC, USA, 2016; p. 18. [Google Scholar]
- Runting, R.K.; Ruslandi Griscom, B.; Struebig, M.J.; Satar, M.; Meijaard, E.; Burivalova, Z.; Cheyne, S.M.; Deere, N.J.; Game, E.T.; Putz, F.E.; et al. Larger gains from improved management over sparing-sharing for tropical forests. Nat. Sustain. 2019, 2, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Energy and Natural Resources Indonesia. “ESDM One Map Indonesia”. 2022. Available online: https://geoportal.esdm.go.id/minerba/ (accessed on 20 September 2022).
- Rodman, P.S. Synecology of Bornean primates: With special reference to the behavior and ecology of orangutans. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1973; p. 218. [Google Scholar]
- Leighton, M. Fruit Resources and Patterns of Feeding, Spacing and Grouping Among Sympatric Bornean hornbills (Bucerotidae). Ph.D. Thesis, University of California, Davis, CA, USA, 1982. [Google Scholar]
- Wilson, C.C.; Wilson, W.L. The influence of selective logging on primates and some other animals in East Kalimantan. Folia Primatol. 1975, 23, 245–274. [Google Scholar] [CrossRef] [PubMed]
- Meijaard, E.; Buchori, D.; Hadiprakarsa, Y.; Utami-Atmoko, S.S.; Nurcahyo, A.; Tiju, A.; Prasetyo, D.; Nardiyono; Christie, L.; Ancrenaz, M.; et al. Quantifying killing of orangutans and human-orangutan conflict in Kalimantan, Indonesia. PLoS ONE 2011, 6, e27491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abram, N.K.; Meijaard, E.; Wells, J.A.; Ancrenaz, M.; Pellier, A.S.; Runting, R.K.; Gaveau, D.; Wich, S.; Nardiyono; Tiju, A.; et al. Mapping perceptions of species’ threats and population trends to inform conservation efforts: The Bornean orangutan case study. Divers. Distrib. 2015, 21, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Siegert, F.; Ruecker, G.; Hinrichs, A.; Hoffmann, A.A. Increased damage from fires in logged forests during droughts caused by El Niño. Lett. Nat. 2001, 414, 437–440. [Google Scholar] [CrossRef]
- Van Nieuwstadt, M.G.L.; Sheil, D. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indoensia. J. Ecol. 2005, 93, 191–201. [Google Scholar] [CrossRef]
- Zhang, T.; Wooster, M.J.; de Jong, M.; Xu, W. How well does the “small fire boost” methodology used within the GFED4.1s fire emissions database represent the timing, location and magnitude of agricultural burning? Remote Sens. 2018, 10, 823. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.; Syktus, J.; Trancoso, R.; Salazar, A.; Thatcher, M.; Watson, J.E.M.; Meijaard, E.; Sheil, D.; Dargusch, P.; McAlpine, C.A. Compounding impact of deforestation on Borneo’s climate during El Niño events. Environ. Res. Lett. 2020, 15, 084006. [Google Scholar] [CrossRef] [Green Version]
- Perugini, L.; Caporaso, L.; Marconi, S.; Cescatti, A.; Quesada, B.; De Noblet, N.; House, J.I.; Arneth, A. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 2017, 12, 1–13. [Google Scholar] [CrossRef]
- McAlpine, C.A.; Johnson, A.; Salazar, A.; Syktus, J.; Wilson, K.; Meijaard, E.; Seabrook, L.; Dargusch, P.; Nordin, H.; Sheil, D. Forest loss and Borneo’s climate. Environ. Res. Lett. 2018, 13, 044009. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 2014, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Lin, H.W.; Yu, J.Y.; Lo, M.H. The 2015 Borneo Fires: What have we learned from the 1997 and 2006 El Niños? Environ. Res. Lett. 2016, 11, 104003. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Luo, X.; Yang, Y.M.; Sun, W.; Cane, M.A.; Cai, W.; Yeh, S.W.; Liu, J. Historical changes of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guild, R.; Wang, X.; Russon, A.E. Tracking Deforestation, Drought, and Fire Occurrence in Kutai National Park, Indonesia. Remote Sens. 2022, 14, 5630. https://doi.org/10.3390/rs14225630
Guild R, Wang X, Russon AE. Tracking Deforestation, Drought, and Fire Occurrence in Kutai National Park, Indonesia. Remote Sensing. 2022; 14(22):5630. https://doi.org/10.3390/rs14225630
Chicago/Turabian StyleGuild, Ryan, Xiuquan Wang, and Anne E. Russon. 2022. "Tracking Deforestation, Drought, and Fire Occurrence in Kutai National Park, Indonesia" Remote Sensing 14, no. 22: 5630. https://doi.org/10.3390/rs14225630
APA StyleGuild, R., Wang, X., & Russon, A. E. (2022). Tracking Deforestation, Drought, and Fire Occurrence in Kutai National Park, Indonesia. Remote Sensing, 14(22), 5630. https://doi.org/10.3390/rs14225630