Monitoring of Atmospheric Carbon Dioxide over a Desert Site Using Airborne and Ground Measurements
"> Figure 1
<p>Pictures of the aircraft Instrumentation. (<b>a</b>) The ACDL system. (<b>b</b>) The control interfaces of some instruments. (<b>c</b>) The Ultraportable Greenhouse Gas Analyzer (UGGA).</p> "> Figure 2
<p>Ground station layout. The solid pink line is the flight route on 19 July 2021. It is worth noting that the Chinese Radiometric Calibration Site (CRCS) (40.17°N, 94.25°E, ~1230 m a.s.l. (above sea level)) is located in the Gobi Desert and approximately 20 km west of Dunhuang city in west China (© Google Earth Pro).</p> "> Figure 3
<p>The flight routes between 11 and 19 July 2021. (© Google Earth Pro).</p> "> Figure 4
<p>U- shaped flight pattern (<b>a</b>) and spiral descent flight pattern (<b>b</b>). The black asterisk represents the CRCS ground station.</p> "> Figure 5
<p>Diurnal variation of XCO<sub>2</sub> measured by EM27/SUN at CRCS ground station.</p> "> Figure 6
<p>Diurnal variation of CO<sub>2</sub> concentration measured by UGGA at CRCS ground station.</p> "> Figure 7
<p>The concentrations of CO<sub>2</sub> measured by the UGGA before calibration (<b>a</b>) and the concentrations of CO<sub>2</sub> measured by the UGGA after calibration (<b>b</b>). The black straight line is the concentration value of the standard gas.</p> "> Figure 8
<p>The CO<sub>2</sub> concentration distribution measured by airborne UGGA in July 2021 (<b>a</b>) and the CO<sub>2</sub> concentration vertical structure (<b>b</b>). In <a href="#remotesensing-14-05224-f008" class="html-fig">Figure 8</a>a, the time period when the aircraft’s flight altitude is decreasing is marked by orange shading. The time when the aircraft’s flight height is increasing is marked with light blue shading. In <a href="#remotesensing-14-05224-f008" class="html-fig">Figure 8</a>b, the gray scatters represent the results at different heights for all CO<sub>2</sub> concentrations marked with shading in <a href="#remotesensing-14-05224-f008" class="html-fig">Figure 8</a>a. The blue scatter points represent the average of all grey scatter points at different heights.</p> "> Figure 9
<p>The distribution of OCO-2 satellite orbits in the flight area (<b>a</b>) and the CO<sub>2</sub> concentration vertical structure measured by the OCO-2 (<b>b</b>). In <a href="#remotesensing-14-05224-f009" class="html-fig">Figure 9</a>a, there are two satellite orbits on 16 July and 18 July 2021 within the flight zone. The solid green line is the satellite orbit. The solid red line is the flight route of the plane on 16 July 2021. The green scatters represent the locations where the OCO-2 satellite data was sampled. In <a href="#remotesensing-14-05224-f009" class="html-fig">Figure 9</a>b, the cyan solid lines represent the results at different heights for all CO<sub>2</sub> concentrations marked with green scatters in <a href="#remotesensing-14-05224-f009" class="html-fig">Figure 9</a>a. The blue scatter points represent the average of all cyan solid lines at different heights (© Google Earth Pro).</p> "> Figure 10
<p>Distribution of the CAMS model data points in the flight area (<b>a</b>) and the CO<sub>2</sub> concentration vertical structure calculated by the CAMS model (<b>b</b>). In <a href="#remotesensing-14-05224-f010" class="html-fig">Figure 10</a>a, the green points represent the locations of the CAMS mode grid data. The solid pink line is the flight route of the plane on 19 July 2021. In <a href="#remotesensing-14-05224-f010" class="html-fig">Figure 10</a>b, the gray scatters represent the results at different heights for all CO<sub>2</sub> concentrations of point 1 in the figure, and each gray profile represents the calculation results at different times at point 1. The blue scatters represent the average of all grey scatter points at different heights (© Google Earth Pro).</p> "> Figure 11
<p>Comparison of vertical structures of CO<sub>2</sub> concentrations measured by airborne UGGA, OCO-2 satellite, and CAMS model (<b>a</b>) and the CO<sub>2</sub> concentration lapse rate of the airborne UGGA, OCO-2 satellite, and CAMS model (<b>b</b>). The green scatter is the measurement result of the airborne UGGA. The solid blue line is the measurement result of the OCO-2 satellite. The pink solid line is the calculation result of the CAMS model.</p> "> Figure 12
<p>Measurement results of XCO<sub>2</sub> and AOD at the CRCS ground station on 11 July 2021 (<b>a</b>). The red dots represent the XCO<sub>2</sub> results measured by EM27/SUN, and the black scatter points represent the AOD results measured by CE318. (<b>b</b>) The correlation analysis result of XCO<sub>2</sub> and AOD.</p> "> Figure 13
<p>Measurement results of XCO<sub>2</sub> and AOD at the CRCS ground station on 12 July 2021 (<b>a</b>). The red dots represent the XCO<sub>2</sub> results measured by EM27/SUN, and the black scatter points represent the AOD results measured by CE318. (<b>b</b>) The correlation analysis result of XCO<sub>2</sub> and AOD.</p> "> Figure 14
<p>Measurement results of XCO<sub>2</sub> and AOD at the CRCS ground station on 16 July 2021 (<b>a</b>). The red dots represent the XCO<sub>2</sub> results measured by EM27/SUN, and the black scatter points represent the AOD results measured by CE318. (<b>b</b>) The correlation analysis result of XCO<sub>2</sub> and AOD.</p> "> Figure 15
<p>Measurement results of XCO<sub>2</sub> and AOD at the CRCS ground station on 18 July 2021 (<b>a</b>). The red dots represent the XCO<sub>2</sub> results measured by EM27/SUN, and the black scatter points represent the AOD results measured by CE318. (<b>b</b>) The correlation analysis result of XCO<sub>2</sub> and AOD.</p> "> Figure 16
<p>Aerosol backscatter coefficient and XCO<sub>2</sub> results measured by the airborne ACDL system on 14 March 2019. The flight altitude of the aircraft is represented by a solid white line, and the green scattered points are the inversion results of XCO<sub>2</sub>. The flight process is divided into ABCD four parts, corresponding to different surface types. The purple vertical line is the dividing line between different surface types.</p> "> Figure 17
<p>Comparison of AOD and XCO<sub>2</sub> measured by the airborne ACDL system in marine and urban areas on 14 March 2019. The blue scatters represent XCO<sub>2</sub> and the black scatters represent AOD. The pink vertical line is the dividing line between the marine area and the urban area.</p> "> Figure 18
<p>Atmospheric CO<sub>2</sub> concentration measured by airborne UGGA during the plane’s horizontal flight at an altitude of 4.05 km on 19 July 2021. The carbon dioxide emission sources on the flight track are marked with black upper triangle symbols.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aircraft Instrumentation
2.2. Ground Site
2.3. Flight Campaign
2.4. Datasets
2.4.1. Airborne and Ground Station Data
2.4.2. OCO-2 XCO2 Dataset
2.4.3. CAMS Model CO2 Dataset
2.5. Data Analysis
3. Results
3.1. Diurnal Variations of Atmospheric CO2
3.2. Vertical Variations of Atmospheric CO2
3.3. XCO2 Estimation and Comparison
3.4. Relationship between XCO2 and Aerosols
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2014; p. 1535. [Google Scholar] [CrossRef] [Green Version]
- UNFCC. Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- Santer, B.D.; Painter, J.F.; Bonfils, C.; Mears, C.A.; Solomon, S.; Wigley, T.M.L.; Gleckler, P.J.; Schmidt, G.A.; Doutriaux, C.; Gillett, N.P.; et al. Human and natural influences on the changing thermal structure of the atmosphere. Proc. Natl. Acad. Sci. USA 2013, 110, 17235–17240. [Google Scholar]
- Mustafa, F.; Bu, L.; Wang, Q.; Ali, M.A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-year comparison of CO2 concentration from NOAA carbon tracker reanalysis model with data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [Google Scholar]
- Stocker, B.D.; Roth, R.; Joos, F.; Spahni, R.; Steinacher, M.; Zaehle, S.; Bouwman, L.; Wang, X.-R.; Prentice, I.C. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Change 2013, 3, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, A.P.; Alden, C.B.; Miller, J.B.; Trans, P.P.; White, J.W.C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 2012, 488, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Dlugokencky, T.P. Trends in Atmospheric Carbon Dioxide. Available online: https://aftp.cmdl.noaa.gov/products/trends/co2/ (accessed on 3 May 2020).
- Mustafa, F.; Bu, L.; Wang, Q.; Yao, N.; Shahzaman, M.; Bilal, M.; Aslam, R.W.; Iqbal, R. Neural-network-based estimation of regional-scale anthropogenic CO2 emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia. Atmos. Meas. Tech. 2021, 14, 7277–7290. [Google Scholar] [CrossRef]
- Refaat, T.F.; Petros, M.; Antill, C.W.; Singh, U.N.; Choi, Y.; Plant, J.V.; Digangi, J.P.; Noe, A. Airborne Testing of 2-μm Pulsed IPDA Lidar for Active Remote Sensing of Atmospheric Carbon Dioxide. Atmosphere 2021, 12, 412. [Google Scholar] [CrossRef]
- Schultz, M.G.; Akimoto, H.; Bottenheim, J.; Buchmann, B.; Galbally, I.E.; Gilge, S.; Helmig, D.; Koide, H.; Lewis, A.C.; Novelli, P.C.; et al. The global atmosphere watch reactive gases measurement network. Elementa 2015, 3, 000067. [Google Scholar] [CrossRef] [Green Version]
- Toon, G.; Blavier, J.-F.; Washenfelder, R.; Wunch, D.; Keppel-Aleks, G.; Wennberg, P.; Connor, B.; Sherlock, V.; Griffith, D.; Deutscher, N.; et al. Total Column Carbon Observing Network (TCCON). In Advances in Imaging; Optica Publishing Group: Vancouver, BC, Canada, 2009. [Google Scholar]
- Wunch, D.; Toon, G.C.; Wennberg, P.O.; Wofsy, S.C.; Stephens, B.B.; Fischer, M.L.; Uchino, O.; Abshire, J.B.; Bernath, P.; Biraud, S.C.; et al. Calibration of the total carbon column observing network using aircraft profile data. Atmos. Meas. Tech. 2010, 3, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Duan, M.; Gao, Y.; Han, R.; Ji, D.; Zhang, W.; Chen, N.; Xia, X.; Liu, H.; Huo, Y. In situ measurement of CO2 and CH4 from aircraft over northeast China and comparison with OCO-2 data. Atmos. Meas. Tech. 2020, 13, 3595–3607. [Google Scholar] [CrossRef]
- Mustafa, F.; Wang, H.; Bu, L.; Wang, Q.; Shahzaman, M.; Bilal, M.; Zhou, M.; Iqbal, R.; Aslam, R.W.; Ali, A.; et al. Validation of GOSAT and OCO-2 against In Situ Aircraft Measurements and Comparison with CarbonTracker and GEOS-Chem over Qinhuangdao, China. Remote Sens. 2021, 13, 899. [Google Scholar] [CrossRef]
- Eldering, A.; Taylor, T.E.; O’Dell, C.W.; Pavlick, R. The OCO-3 mission: Measurement objectives and expected performance based on 1 year of simulated data. Atmos. Meas. Tech. 2019, 12, 2341–2370. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. Sci. Online Lett. Atmos. 2009, 5, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Crisp, D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2). Proc. SPIE 2015, 9607, 960702. [Google Scholar]
- Crisp, D.; Miller, C.E.; DeCola, P.L. NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space. Appl. Remote Sens. 2008, 2, 023508. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat mission: Preliminary global observations. Sci. Bull. 2018, 63, 1200–1207. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, T.; Morino, I.; Yoshida, Y.; Saito, M.; Noda, H.; Ohyama, H.; Niwa, Y.; Yashiro, H.; Kamei, A.; Kawazoe, F.; et al. Early Results of GOSAT-2 Level 2 Products. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- Taylor, T.E.; Eldering, A.; Merrelli, A.; Kiel, M.; Somkuti, P.; Cheng, C.; Rosenberg, R.; Fisher, B.; Crisp, D.; Basilio, R.; et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sens. Environ. 2020, 251, 112032. [Google Scholar]
- Taylor, T.E.; O’Dell, C.W.; Crisp, D.; Kuze, A.; Lindqvist, H.; Wennberg, P.O.; Chatterjee, A.; Gunson, M.; Eldering, A.; Fisher, B.; et al. An eleven year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Atmos.–Atmos. Chem. Phys. 2021. [Google Scholar] [CrossRef]
- Refaat, T.F.; Singh, U.N.; Yu, J.; Petros, M.; Ismail, S.; Kavaya, M.J.; Davis, K.J. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements. Appl. Opt. 2015, 54, 1387. [Google Scholar] [CrossRef]
- Refaat, T.F.; Singh, U.N.; Yu, J.; Petros, M.; Remus, R.; Ismail, S. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement. Appl. Opt. 2016, 55, 4232. [Google Scholar] [CrossRef]
- Abshire, J.; Ramanathan, A.; Riris, H.; Mao, J.; Allan, G.; Hasselbrack, W.; Weaver, C.; Browell, E. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar. Remote Sens. 2013, 6, 443–469. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Ramanathan, A.; Abshire, J.B.; Kawa, S.R.; Riris, H.; Allan, G.R.; Rodriguez, M.; Hasselbrack, W.E.; Sun, X.; Numata, K.; et al. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2. Atmos. Meas. Tech. 2018, 11, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Ma, X.; Liang, A.; Zhang, T.; Zhao, Y.; Zhang, M.; Gong, W. Performance Evaluation for China’s Planned CO2-IPDA. Remote Sens. 2017, 9, 768. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, J.; Chen, X.; Zhu, X.; Zhang, J.; Li, S.; Sun, Y.; Hou, X.; Bi, D.; Bu, L.; et al. Airborne Validation Experiment of 1.57-μm Double-Pulse IPDA LIDAR for Atmospheric Carbon Dioxide Measurement. Remote Sens. 2020, 12, 1999. [Google Scholar] [CrossRef]
- Han, G.; Xu, H.; Gong, W.; Liu, J.; Du, J.; Ma, X.; Liang, A. Feasibility Study on Measuring Atmospheric CO2 in Urban Areas Using Spaceborne CO2-IPDA LIDAR. Remote Sens. 2018, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Kawa, S.; Abshire, J.; Baker, D.; Browell, E.; Crisp, D.; Crowell, S.; Hyon, J.; Jacob, J.; Jucks, K.W.; Lin, B.; et al. Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS): Final Report of the ASCENDS Ad Hoc Science Definition Team; Goddard Space Flight Center: Greenbelt, MD, USA, 2018.
- Refaat, T.F.; Petros, M.; Singh, U.N.; Antill, C.W.; Remus, R.G. High-Precision and High-Accuracy Column Dry-Air Mixing Ratio Measurement of Carbon Dioxide Using Pulsed 2-Um IPDA Lidar. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5804–5819. [Google Scholar] [CrossRef]
- Singh, U.N.; Walsh, B.M.; Yu, J.; Petros, M.; Kavaya, M.J.; Refaat, T.F.; Barnes, N.P. Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing. Opt. Mater. Express 2015, 5, 827. [Google Scholar] [CrossRef]
- Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Büdenbender, C.; Quatrevalet, M.; Kiemle, C.; Gerbig, C. CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: Measurement performance and quantification of strong point source emissions. Appl. Opt. 2017, 56, 5182. [Google Scholar] [CrossRef]
- Ehret, G.; Kiemle, C.; Wirth, M.; Amediek, A.; Fix, A.; Houweling, S. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis. Appl. Phys. 2008, 90, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Mustafa, F.; Bu, L.; Zhu, S.; Liu, J.; Chen, W. Atmospheric carbon dioxide measurement from aircraft and comparison with OCO-2 and CarbonTracker model data. Atmos. Meas. Tech. 2021, 14, 6601–6617. [Google Scholar] [CrossRef]
- EDGAR: European Commission. Emission Database for Global Atmospheric Research (EDGAR v4.3.2). Available online: http://edgar.jrc.ec.europe.eu (accessed on 11 September 2022).
- Kiel, M.; O’Dell, C.W.; Fisher, B.; Eldering, A.; Nassar, R.; MacDonald, C.G.; Wennberg, P.O. How bias correction goes wrong: Measurement of XCO2 affected by erroneous surface pressure estimates. Atmos. Meas. Tech. 2019, 12, 2241–2259. [Google Scholar] [CrossRef] [Green Version]
- Mahesh, P.; Sreenivas, G.; Rao, P.V.N.; Dadhwal, V.K.; Sai Krishna, S.V.S.; Mallikarjun, K. High-precision surface-level CO2 and CH4 using off-axis integrated cavity output spectroscopy (OA-ICOS) over Shadnagar, India. Int. J. Remote Sens. 2015, 36, 5754–5765. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Zhang, M.; Feng, J. Effect of relative humidity at either acute or chronic moderate temperature on growth performance and droppings’ corticosterone metabolites of broilers. J. Integr. Agric. 2019, 18, 152–159. [Google Scholar] [CrossRef]
- Crisp, D.; Pollock, H.; Rosenberg, R.; Chapsky, L.; Lee, R.; Oyafuso, F.; Frankenberg, C.; Dell, C.; Bruegge, C.; Doran, G.; et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 2017, 10, 59–81. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm-Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef] [Green Version]
- Crisp, D.; Fisher, B.M.; O’Dell, C.; Frankenberg, C.; Basilio, R.; Bösch, H.; Brown, L.R.; Castano, R.; Connor, B.; Deutscher, N.M.; et al. The ACOS CO2 retrieval algorithm—Part II: Global XCO2 data characterization. Atmos. Meas. Tech. 2012, 5, 687–707. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, M.C.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef] [Green Version]
- ODell, C.; Eldering, A.; Gunson, M.; Crisp, D.; Fisher, B.; Kiel, M.; Kuai, L.; Laughner, J.; Merrelli, A.; Nelson, R.; et al. Improvements in XCO2 accuracy from OCO-2 with the latest ACOS v10 product. In Proceedings of the 23rd EGU General Assembly, online, 19–30 April 2021. EGU21-10484. [Google Scholar]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Massart, S.; Agustí-Panareda, A.; Heymann, J.; Buchwitz, M.; Chevallier, F.; Reuter, M.; Hilker, M.; Burrows, J.P.; Deutscher, N.M.; Feist, D.G.; et al. Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales. Atmos. Chem. Phys. 2016, 16, 1653–1671. [Google Scholar] [CrossRef] [Green Version]
- Engelen, R.J. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational four-dimensional variational (4D-Var) data assimilation system: Results and validation. J. Geophys. Res. 2005, 110, D18305. [Google Scholar] [CrossRef]
- Chen, H.W.; Zhang, L.N.; Zhang, F.; Davis, K.J.; Lauvaux, T.; Pal, S.; Gaudet, B.; DiGangi, J.P. Evaluation of Regional CO2 Mole Fractions in the ECMWF CAMS Real-Time Atmospheric Analysis and NOAA CarbonTracker Near-Real-Time Reanalysis with Airborne Observations From ACT-America Field Campaigns. J. Geophys. Res. Atmos. 2019, 124, 8119–8133. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113, D05305. [Google Scholar] [CrossRef]
- Rodgers, C.D.; Connor, B.J. Intercomparison of remote sounding instruments. J. Geophys. Res. Atmos. 2003, 108, 4116. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Abshire, J.B.; Ramanathan, A.K.; Riris, H.; Allan, G.R.; Sun, X.; Hasselbrack, W.E.; Mao, J.; Wu, S.; Chen, J.; Numata, K.; et al. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector. Atmos. Meas. Tech. 2018, 11, 2001–2025. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhang, H.; Han, G.; Mao, F.; Xu, H.; Shi, T.; Hu, H.; Sun, T.; Gong, W. A Regional Spatiotemporal Downscaling Method for CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8084–8093. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Toon, G.C.; Keppel-Aleks, G.; Yavin, Y.G. Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett. 2009, 36, L15810. [Google Scholar] [CrossRef]
Ground Station | Location (Lon, Lat) | Instrument |
---|---|---|
CRCS | 94.25, 40.17 | Sun spectrometer/EM27/SUN/Sun photometer/UGGA/ meteorological instrument/High spectral resolution lidar |
Dunhuang | 94.68, 40.15 | Coherent wind lidar/Sun spectrometer |
Guazhou | 95.78, 40.52 | Sun photometer/Mie lidar |
Akesai | 94.34, 9.63 | Sun photometer/Mie lidar/UGGA |
Date | Flight Time (BJT) | Flight Altitude (km) |
---|---|---|
11 July 2021 | 7:57–13:40 | 5.7 |
16 July 2021 | 8:34–12:54 | 5.8 |
17 July 2021 | 7:44–11:46 | 5.8 |
18 July 2021 | 7:57–12:20 | 6.1 |
19 July 2021 | 8:34–13:00 | 5.2 |
Date | IPDA Lidar (ppm) | Airborne UGGA (ppm) | EM27/SUN (ppm) | OCO-2 (ppm) | CAMS (ppm) |
---|---|---|---|---|---|
16 July 2021 | 408.44 | 410.15 (spiral) | 412.36 | 414.61 | 416.03 |
411.41 (landing) | |||||
18 July 2021 | 409.01 | 413.53 (spiral) | 412.73 | 414.77 | 416.04 |
411.79 (landing) |
Name | Latitude/Degree | Longitude/Degree |
---|---|---|
Hengya Cement Plant1 | 40.51 | 95.78 |
Dunsheng Cement Plant | 40.20 | 94.42 |
Yangguan Power Plant | 39.85 | 94.19 |
Hengya Cement Plant2 | 39.59 | 94.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Mustafa, F.; Bu, L.; Yang, J.; Fan, C.; Liu, J.; Chen, W. Monitoring of Atmospheric Carbon Dioxide over a Desert Site Using Airborne and Ground Measurements. Remote Sens. 2022, 14, 5224. https://doi.org/10.3390/rs14205224
Wang Q, Mustafa F, Bu L, Yang J, Fan C, Liu J, Chen W. Monitoring of Atmospheric Carbon Dioxide over a Desert Site Using Airborne and Ground Measurements. Remote Sensing. 2022; 14(20):5224. https://doi.org/10.3390/rs14205224
Chicago/Turabian StyleWang, Qin, Farhan Mustafa, Lingbing Bu, Juxin Yang, Chuncan Fan, Jiqiao Liu, and Weibiao Chen. 2022. "Monitoring of Atmospheric Carbon Dioxide over a Desert Site Using Airborne and Ground Measurements" Remote Sensing 14, no. 20: 5224. https://doi.org/10.3390/rs14205224
APA StyleWang, Q., Mustafa, F., Bu, L., Yang, J., Fan, C., Liu, J., & Chen, W. (2022). Monitoring of Atmospheric Carbon Dioxide over a Desert Site Using Airborne and Ground Measurements. Remote Sensing, 14(20), 5224. https://doi.org/10.3390/rs14205224