Spatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series
"> Figure 1
<p>(<b>A</b>) Map of the Adventfjorden study area and the catchment of Adventelva and Longyearelva. Longyearbyen is marked with a red star. Yellow squares mark monitoring stations for weather (at Longyearbyen Airport) and river-hydrology (monitoring station operated by NIVA at Aventelva), (<b>B</b>) Overview of the study region in Svalbard archipelago, the highlighted outline indicating the area of interest (AOI) shown in (<b>A</b>,<b>C</b>) Station map of Adventfjorden for 2019 and 2020 field campaigns within the area extent defined for Adventfjorden for the purpose of this study.(map was created based on S-100 vector data provided by Norwegian Polar Institute [<a href="#B50-remotesensing-14-03123" class="html-bibr">50</a>]; bathymetry data from the Norwegian Mapping Authority [<a href="#B51-remotesensing-14-03123" class="html-bibr">51</a>]; contains modified Copernicus Sentinel-2 data (2020, Sentinel-2 B image 27 July 2020) processed by Sentinel-Hub (<a href="https://scihub.copernicus.eu/" target="_blank">https://scihub.copernicus.eu/</a>, accessed: 28 June 2021).</p> "> Figure 2
<p>Validation comparison of (<b>A</b>) the original SPM algorithm calibration (NeCal) and (<b>B</b>) the regionally tuned algorithm (AdvFCal) based on the match-up dataset from three sampling days, shown by the different colours. The dashed line illustrates a 1:1 relationship between modelled and in-situ values.</p> "> Figure 3
<p>Relative area of Adventfjorden classified as river plume (i.e., covered by <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <msub> <mrow> <mi>SPM</mi> </mrow> <mrow> <mi>sat</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> values of 30 to 500 <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mi>mg</mi> <mo> </mo> <mi mathvariant="normal">L</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>). Cloud cover as estimated from the relative number of valid observations (NVO) per day is shown as the gradient of colour. Images in JJA with extensive (>50%) cloud cover, i.e., invalid observations, were excluded from the environmental statistics later on. Dashed lines represent the in-situ matchup days considered for the cal/val dataset.</p> "> Figure 4
<p>Box and whiskers plot with underlying point observations for <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <msub> <mrow> <mi>SPM</mi> </mrow> <mrow> <mi>sat</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> at the sampling stations in Adventfjorden in 2019 and 2020 (for FreshFate station grid see map in <a href="#remotesensing-14-03123-f001" class="html-fig">Figure 1</a>). NVO (n) for each station are indicated below each boxplot. The stations are sorted from inner to outer fjord stations to illustrate spatial variability.</p> "> Figure 5
<p>Composite images of mean values for <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <msub> <mrow> <mi>SPM</mi> </mrow> <mrow> <mi>sat</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> (upper panels) and coefficient of variation (CV, lower panel) per pixel during the months of June (<b>A</b>,<b>D</b>), July (<b>B</b>,<b>E</b>), and August (<b>C</b>,<b>F</b>). Composite are based on both 2019 and 2020 satellite imagery (background corresponding to Sentinel-2 image in overview map of this study). Contains modified Copernicus Sentinel-2 data (2020, Sentinel-2 B image 27 July 2020) processed by Sentinel-Hub (<a href="https://scihub.copernicus.eu/" target="_blank">https://scihub.copernicus.eu/</a>, accessed on 28 June 2021).</p> "> Figure 6
<p>Linear model showing the analysed relationship of the satellite derived river plume extent (<math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <msub> <mrow> <mi>SPM</mi> </mrow> <mrow> <mi>sat</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math>> 30 <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mi>mg</mi> <mo> </mo> <mi mathvariant="normal">L</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>) and air temperature (°C) as well as the river water level and median values of <math display="inline"><semantics> <mrow> <mi>l</mi> <mi>o</mi> <mi>g</mi> <msub> <mi>C</mi> <mrow> <mi>SPM</mi> </mrow> </msub> </mrow> </semantics></math>. The equation and <span class="html-italic">R</span><sup>2</sup>, the coefficient of determination, are given. Colours and shapes represent the month and year of the satellite acquisition, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. In-Situ Measurements
2.3. Sentinel-2 Satellite Imagery
2.4. Calibration and Validation of the SPM Algorithm
2.5. Environmental Datasets
2.6. Time-Series Analysis and Environmental Statistics
- Averaged air temperature (°C);
- Precipitation sums (mm);
- Averaged water level at the river station (m);
- Averaged turbidity T (NTU) at the river station.
3. Results
3.1. Meteorological and Environmental Conditions in 2019 and 2020
3.2. In-Situ Measurements
3.3. SPM Algorithm Calibration and Validation
3.4. Sensitivity Analysis of AdvFCal
3.5. Time-Series Analysis
3.6. Environmental Statistics
4. Discussion
4.1. Surface Water SPM Exhibits High Variability in Space and Time
4.2. Temperature Drives Mobilisation and Transport of SPM to Arctic Fjords
4.3. Ecological Implications under Climate Change
4.4. Potential for Remote and Satellite Observations of SPM in Arctic Fjord Estuaries
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanssen-Bauer, I.; Førland, E.; Hisdal, H.; Mayer, S.; Sandø, A.B.; Sorteberg, A. (Eds.) Climate in Svalbard 2100: A Knowledge Base for Climate Adaptation; NCCS Report No. 1/2019; NCCS: Albuquerque, NM, USA, 2019. [Google Scholar]
- Nowak, A.; Hodgkins, R.; Nikulina, A.; Osuch, M.; Wawrzyniak, T.; Kavan, J.; Łepkowska, E.; Majerska, M.; Romashova, K.; Vasilevich, I.; et al. From Land to Fjords: The Review of Svalbard Hydrology from 1970 to 2019 (SvalHydro); Loughborough University: Loughborough, UK, 2021. [Google Scholar]
- IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Summary for policy makers; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- van Pelt, W.J.J.; Schuler, T.V.; Pohjola, V.A.; Pettersson, R. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. J. Glaciol. 2021, 67, 485–499. [Google Scholar] [CrossRef]
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Aré, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Forbes, D.L.; et al. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, M.; Billet, M.F.; Canário, J.; Cory, R.M.; et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar] [CrossRef] [Green Version]
- Cottier, F.R.; Nilsen, F.; Skogseth, R.; Tverberg, V.; Skarðhamar, J.; Svendsen, H. Arctic fjords: A review of the oceanographic environment and dominant physical processes. Geol. Soc. Lond. Spec. Publ. 2010, 344, 35–50. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Burrell, D.C.; Skei, J.M. Fjords: Processes and Products; Springer: New York, NY, USA; London, UK, 1987; ISBN 0-387-96342-1. [Google Scholar]
- Lund-Hansen, L.C.; Andersen, T.J.; Nielsen, M.H.; Pejrup, M. Suspended Matter, Chl-a, CDOM, Grain Sizes, and Optical Properties in the Arctic Fjord-Type Estuary, Kangerlussuaq, West Greenland during Summer. Estuaries Coasts 2010, 33, 1442–1451. [Google Scholar] [CrossRef]
- Mascarenhas, V.J.; Voß, D.; Wollschlaeger, J.; Zielinski, O. Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway. J. Geophys. Res. Oceans 2017, 122, 3828–3847. [Google Scholar] [CrossRef]
- Terhaar, J.; Lauerwald, R.; Regnier, P.; Gruber, N.; Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 2021, 12, 169. [Google Scholar] [CrossRef]
- McGovern; MPavlov, A.K.; Deininger, A.; Granskog, M.A.; Leu, E.; Søreide, J.E.; Poste, A.E. Terrestrial Inputs Drive Seasonality in Organic Matter and Nutrient Biogeochemistry in a High Arctic Fjord System (Isfjorden, Svalbard). Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Wolanski, E. Estuarine Ecohydrology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-444-530660. [Google Scholar]
- Mann, K.H. Ecology of Coastal Waters: With Implications for Management, 2nd ed.; Blackwell Science: Malden, MA, USA, 2000; ISBN 0-86542-550-7. [Google Scholar]
- Forwick, M.; Vorren, T.O.; Hald, M.; Korsun, S.; Roh, Y.; Vogt, C.; Yoo, K.-C. Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen. Geol. Soc. Lond. Spec. Publ. 2010, 344, 163–193. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Arndt, S.; Austin, W.E.; Benn, D.I.; Bertrand, S.; Cui, X.; Faust, J.C.; Koziorowska-Makuch, K.; Moy, C.M.; Savage, C.; et al. Fjords as Aquatic Critical Zones (ACZs). Earth-Sci. Rev. 2020, 203, 103145. [Google Scholar] [CrossRef]
- Pavlov, A.K. The Underwater Light Climate in Kongsfjorden and Its Ecological Implications. In The Ecosystem of Kongsfjorden, Svalbard; Hop, H., Wiencke, C., Eds.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-46425-1. [Google Scholar]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 2010; ISBN 9781139168212. [Google Scholar]
- Holinde, L.; Zielinski, O. Bio-optical characterization and light availability parameterization in Uummannaq Fjord and Vaigat–Disko Bay (West Greenland). Ocean Sci. 2016, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Frigstad, H.; Kaste, Ø.; Deininger, A.; Kvalsund, K.; Christensen, G.; Bellerby, R.G.J.; Sørensen, K.; Norli, M.; King, A.L. Influence of Riverine Input on Norwegian Coastal Systems. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Aksnes, D.L.; Dupont, N.; Staby, A.; Fiksen, Ø.; Kaartvedt, S.; Aure, J. Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar. Ecol. Prog. Ser. 2009, 387, 39–49. [Google Scholar] [CrossRef]
- Konik, M.; Darecki, M.; Pavlov, A.K.; Sagan, S.; Kowalczuk, P. Darkening of the Svalbard Fjords Waters Observed With Satellite Ocean Color Imagery in 1997–2019. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Neukermans, G.; Ruddick, K.; Loisel, H.; Roose, P. Optimization and quality control of suspended particulate matter concentration measurement using turbidity measurements. Limnol. Oceanogr. Methods 2012, 10, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Elverhøi, A.; Lønne, Ø.; Seland, R. Glaciomarine sedimentation in a modern fjord environment, Spitsbergen. Polar Res. 1983, 1, 127–149. [Google Scholar] [CrossRef]
- IOCCG. Earth Observations in Support of Global Water Quality Monitoring; Greb, S., Dekker, A., Binding, C., Eds.; IOCCG Report Series, No. 17; IOCCG: Dartmouth, NS, Canada, 2018. [Google Scholar]
- Doxaran, D.; Ehn, J.; Bélanger, S.; Matsuoka, A.; Hooker, S.; Babin, M. Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing. Biogeosciences 2012, 9, 3213–3229. [Google Scholar] [CrossRef] [Green Version]
- Ehn, J.K.; Reynolds, R.A.; Stramski, D.; Doxaran, D.; Lansard, B.; Babin, M. Patterns of suspended particulate matter across the continental margin in the Canadian Beaufort Sea during summer. Biogeosciences 2019, 16, 1583–1605. [Google Scholar] [CrossRef] [Green Version]
- McGrath, D.; Steffen, K.; Overeem, I.; Mernild, S.H.; Hasholt, B.; van den Broeke, M. Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq Fjord, West Greenland. J. Glaciol. 2010, 56, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Klein, K.P.; Lantuit, H.; Heim, B.; Fell, F.; Doxaran, D.; Irrgang, A.M. Long-Term High-Resolution Sediment and Sea Surface Temperature Spatial Patterns in Arctic Nearshore Waters Retrieved Using 30-Year Landsat Archive Imagery. Remote Sens. 2019, 11, 2791. [Google Scholar] [CrossRef] [Green Version]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.; Chuprin, A.; et al. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Neder, C.; Fofonova, V.; Androsov, A.; Kuznetsov, I.; Abele, D.; Falk, U.; Schloss, I.R.; Sahade, R.; Jerosch, K. Modelling suspended particulate matter dynamics at an Antarctic fjord impacted by glacier melt. J. Mar. Syst. 2022, 231, 103734. [Google Scholar] [CrossRef]
- Moskalik, M.; Ćwiąkała, J.; Szczuciński, W.; Dominiczak, A.; Głowacki, O.; Wojtysiak, K.; Zagórski, P. Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard. Oceanologia 2018, 60, 446–463. [Google Scholar] [CrossRef]
- Melton, S.M.; Alley, R.B.; Anandakrishnan, S.; Parizek, B.R.; Shahin, M.G.; Stearns, L.A.; LeWinter, A.L.; Finnegan, D.C. Meltwater drainage and iceberg calving observed in high-spatiotemporal resolution at Helheim Glacier, Greenland. J. Glaciol. 2022, 1–17. [Google Scholar] [CrossRef]
- Wójcik, K.A.; Bialik, R.J.; Osińska, M.; Figielski, M. Investigation of Sediment-Rich Glacial Meltwater Plumes Using a High-Resolution Multispectral Sensor Mounted on an Unmanned Aerial Vehicle. Water 2019, 11, 2405. [Google Scholar] [CrossRef] [Green Version]
- Klein, K.P.; Lantuit, H.; Heim, B.; Doxaran, D.; Juhls, B.; Nitze, I.; Walch, D.; Poste, A.; Søreide, J.E. The Arctic Nearshore Turbidity Algorithm (ANTA) - A multi sensor turbidity algorithm for Arctic nearshore environments. Sci. Remote Sens. 2021, 4, 100036. [Google Scholar] [CrossRef]
- Petit, T.; Hamre, B.; Sandven, H.; Röttgers, R.; Kowalczuk, P.; Zablocka, M.; Granskog, M.A. Inherent optical properties of dissolved and particulate matter in an Arctic fjord (Storfjorden, Svalbard) in early summer. Ocean Sci. 2022, 18, 455–468. [Google Scholar] [CrossRef]
- Slonecker, E.T.; Jones, D.K.; Pellerin, B.A. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM). Mar. Pollut. Bull. 2016, 107, 518–527. [Google Scholar] [CrossRef]
- IOCCG. Ocean Colour Remote Sensing in Polar Seas; Babin, M., Arrigo, K., Bélanger, S., Forget, M.-H., Eds.; IOCCG Report Series, No. 16; IOCCG: Dartmouth, NS, Canada, 2015. [Google Scholar]
- Bélanger, S.; Babin, M.; Tremblay, J.-É. Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences 2013, 10, 4087–4101. [Google Scholar] [CrossRef] [Green Version]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Han, B.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Bryère, P.; Ouillon, S.; Dessailly, D.; Xing, Q.; Zhu, J. Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters. Remote Sens. 2016, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- IOCCG. Synergy between Ocean Colour and Biogeochemical/Ecosystem Models; Dutkiewicz, S., Ed.; IOCCG Report Series, No. 19; IOCCG: Dartmouth, NS, Canada, 2020. [Google Scholar]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Shanmugam, P.; He, X.; Singh, R.K.; Varunan, T. A modern robust approach to remotely estimate chlorophyll in coastal and inland zones. Adv. Space Res. 2018, 61, 2491–2509. [Google Scholar] [CrossRef]
- Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Ody, A.; Doxaran, D.; Verney, R.; Bourrin, F.; Morin, G.P.; Pairaud, I.; Gangloff, A. Ocean Color Remote Sensing of Suspended Sediments along a Continuum from Rivers to River Plumes: Concentration, Transport, Fluxes and Dynamics. Remote Sens. 2022, 14, 2026. [Google Scholar] [CrossRef]
- Weslawski, J. Influence of salinity and suspended matter on benthos of an Arctic tidal flat. ICES J. Mar. Sci. 1999, 56, 194–202. [Google Scholar] [CrossRef]
- Zajączkowski, M. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Pol. Polar Res. 2008, 29, 59–72. [Google Scholar]
- Norwegian Polar Institute. Kartdata Svalbard 1:100 000 (S100 Kartdata)/Map Data; Norwegian Polar Institute: Tromsø, Norway, 2014. [Google Scholar] [CrossRef]
- Kartverket—Norwegian Mapping Authority. Sjøkart—Dybdedata. Available online: https://kartkatalog.geonorge.no/metadata/kartverket/dybdedata/2751aacf-5472-4850-a208-3532a51c529a (accessed on 30 January 2022).
- Zajączkowski, M.; Szczuciński, W.; Bojanowski, R. Recent changes in sediment accumulation rates in Adventfjorden, Svalbard. Oceanologia 2004, 46, 217–231. [Google Scholar]
- Hagen, J.O.; Lisestøl, O.; Erik, R.; Jørgensen, T. Glacier Atlas of Svalbard and Jan Mayen; Meddelelser No. 129; Norsk Polarinstitutt: Oslo, Norway, 1993; Available online: https://brage.npolar.no/npolar-xmlui/handle/11250/173065 (accessed on 18 April 2022).
- Bogen, J.; Bønsnes, T.E. Erosion and sediment transport in High Arctic rivers, Svalbard. Polar Res. 2003, 22, 175–189. [Google Scholar] [CrossRef]
- Węsławski, J.M. Adventfjorden: Arctic Sea in the Backyard; Institute of Oceanology PAS: Sopot, Poland, 2011. [Google Scholar]
- Zajączkowski, M.; Nygård, H.; Hegseth, E.N.; Berge, J. Vertical flux of particulate matter in an Arctic fjord: The case of lack of the sea-ice cover in Adventfjorden 2006–2007. Polar Biol. 2010, 33, 223–239. [Google Scholar] [CrossRef]
- Wiedmann, I.; Reigstad, M.; Marquardt, M.; Vader, A.; Gabrielsen, T.M. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord—Different from subarctic fjords? J. Mar. Syst. 2016, 154, 192–205. [Google Scholar] [CrossRef] [Green Version]
- ISO 11923:1997; Water Quality—Determination of Suspended Solids by Filtration through Glass-Fibre Filters. ISO: Geneva, Switzerland, 1997. Available online: https://www.iso.org/standard/20654.html (accessed on 21 June 2021).
- Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48, 843–859. [Google Scholar] [CrossRef]
- IOCCG. Minimum Requirements for an Operational Ocean-Colour Sensor for the Open Ocean; Morel, A., Ed.; Reports of the International Ocean-Colour Coordinating Group, No. 13; IOCCG: Dartmouth, NS, Canada, 1998. [Google Scholar]
- IOCCG. Mission Requirements for Future Ocean-Colour Sensors; McClain, C.R., Meister, G., Eds.; Reports of the International Ocean-Colour Coordinating Group, No. 13; IOCCG: Dartmouth, NS, Canada, 2012; Available online: http://www.ioccg.org/reports/IOCCG_Report13.pdf (accessed on 23 June 2021).
- Singh, R.K.; Shanmugam, P.; He, X.; Schroeder, T. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones. Opt. Express 2019, 27, A1118–A1145. [Google Scholar] [CrossRef]
- Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric correction for satellite ocean color radiometry. In A Tutorial and Documentation NASA Ocean Biology Processing Group (Issue June); Goddart Space Flight Center: Greenbelt, MD, USA, 2016. [Google Scholar]
- Mabit, R.; Araújo, C.A.S.; Singh, R.K.; Bélanger, S. Empirical Remote Sensing Algorithms to Retrieve SPM and CDOM in Québec Coastal Waters. Front. Remote Sens. 2022, 3, 834908. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters; IOCCG: Dartmouth, NS, Canada, 2000. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance metrics for the assessment of satellite data products: An ocean color case study. Opt. Express 2018, 26, 7404–7422. [Google Scholar] [CrossRef] [Green Version]
- Nordli, Ø. The Svalbard Airport Temperature Series. Bull. Geography. Phys. Geogr. Ser. 2010, 3, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Meteorologisk Institutt. Norsk Klimaservicesenter. Seklima. Observasjoner og værstatistikk. Available online: https://seklima.met.no/observations/ (accessed on 20 January 2022).
- Kartverket—Norwegian Mapping Authority. Tidal and Water Level Data. Available online: https://www.kartverket.no/en/at-sea/se-havniva (accessed on 20 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R package version 3.5-11. 2021. Available online: http://CRAN.R-project.org/package=raster (accessed on 15 June 2022).
- Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files: R Package Version 1.18. 2021. Available online: https://CRAN.R-project.org/package=ncdf4 (accessed on 15 June 2022).
- Ody, A.; Doxaran, D.; Vanhellemont, Q.; Nechad, B.; Novoa, S.; Many, G.; Bourrin, F.; Verney, R.; Pairaud, I.; Gentili, B. Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal River Plume. Remote Sens. 2016, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Simko, V. R package ’corrplot’: Visualization of a Correlation Matrix. R paclage version 0.92. 2021. Available online: https://github.com/taiyun/corrplot (accessed on 23 June 2022).
- Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Aphalo, P.J. ggpmisc: Miscellaneous Extensions to ‘ggplot2’. 2021. Available online: https://CRAN.R-project.org/package=ggpmisc (accessed on 15 June 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. 2014. Available online: https://CRAN.R-project.org/package=RColorBrewer (accessed on 15 June 2022).
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Zajączkowski, M.; Włodarska-Kowalczuk, M. Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I. Flux, deposition, and sediment dynamics. Estuar. Coast. Shelf Sci. 2007, 74, 285–296. [Google Scholar] [CrossRef]
- Rothenburg, M.A.J. The Advent River system, Central Svalbard: A High Temporal Resolution Analysis of Sediment Flux from a Dynamic Arctic River-Mouth. Master’s Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 2019. [Google Scholar]
- Yde, J.C.; Riger-Kusk, M.; Christiansen, H.H.; Tvis Knudsen, N.; Humlum, O. Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. J. Glaciol. 2008, 54, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Urbanski, J.A.; Stempniewicz, L.; Węsławski, J.M.; Dragańska-Deja, K.; Wochna, A.; Goc, M.; Iliszko, L. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holding, J.M.; Markager, S.; Juul-Pedersen, T.; Paulsen, M.L.; Møller, E.F.; Meire, L.; Sejr, M.K. Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off. Biogeosciences 2019, 16, 3777–3792. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Hodson, A. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: A case study of Bayelva watershed, Svalbard. Polar Res. 2013, 32, 19691. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nature Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, B.B.; Laufer, K.; Michaud, A.B.; Wehrmann, L.M. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems—Case study of Svalbard fjords. Limnol. Oceanogr. 2021, 66, S273–S292. [Google Scholar] [CrossRef]
- Meire, L.; Mortensen, J.; Meire, P.; Juul-Pedersen, T.; Sejr, M.K.; Rysgaard, S.; Nygaard, R.; Huybrechts, P.; Meysman, F.J.R. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 2017, 23, 5344–5357. [Google Scholar] [CrossRef] [Green Version]
- Hopwood, M.J.; Carroll, D.; Dunse, T.; Hodson, A.; Holding, J.M.; Iriarte, J.L.; Ribeiro, S.; Achterberg, E.P.; Cantoni, C.; Carlson, D.F.; et al. Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 2020, 14, 1347–1383. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, M.P.; Waterman, S.; Burgess, D.O.; Williams, P.L.; Bundy, R.M.; Mellett, T.; Roberts, M.; Bertrand, E.M. Glaciers and Nutrients in the Canadian Arctic Archipelago Marine System. Global Biogeochem. Cycles 2021, 35. [Google Scholar] [CrossRef]
- Halbach, L.; Vihtakari, M.; Duarte, P.; Everett, A.; Granskog, M.A.; Hop, H.; Kauko, H.M.; Kristiansen, S.; Myhre, P.I.; Pavlov, A.K.; et al. Tidewater Glaciers and Bedrock Characteristics Control the Phytoplankton Growth Environment in a Fjord in the Arctic. Front. Mar. Sci. 2019, 6, 254. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar] [CrossRef]
- Yu, X.; Lee, Z.; Shen, F.; Wang, M.; Wei, J.; Jiang, L.; Shang, Z. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 2019, 235, 111491. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Neukermans, G.; Loisel, H.; Mériaux, X.; Astoreca, R.; McKee, D. In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanogr. 2012, 57, 124–144. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, H.H.; French, H.M.; Humlum, O. Permafrost in the Gruve-7 mine, Adventdalen, Svalbard. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2005, 59, 109–115. [Google Scholar] [CrossRef]
- Ligi, M.; Kutser, T.; Kallio, K.; Attila, J.; Koponen, S.; Paavel, B.; Soomets, T.; Reinart, A. Testing the performance of empirical remote sensing algorithms in the Baltic Sea waters with modelled and in situ reflectance data. Oceanologia 2017, 59, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Jawak, S.D.; Andersen, B.N.; Pohjola, V.A.; Godøy, Ø.; Hübner, C.; Jennings, I.; Ignatiuk, D.; Holmén, K.; Sivertsen, A.; Hann, R.; et al. SIOS’s Earth Observation (EO), Remote Sensing (RS), and Operational Activities in Response to COVID-19. Remote Sens. 2021, 13, 712. [Google Scholar] [CrossRef]
Date | Platform | n | |||
---|---|---|---|---|---|
14 June 2019 | Basecamp | 11 | |||
17 June 2019 | UNIS Kolga | 8 | |||
06 August 2019 | UNIS Kolga | - | 10 | ||
07 August 2019 | UNIS Kolga | 8 | |||
12 June 2020 | UNIS Polaris | - | 11 | ||
17 July 2020 | UNIS Polaris | - | 11 | ||
30 July 2020 | UNIS Polaris | - | 9 | ||
26 August 2020 | UNIS Polaris | - | 10 | ||
22 September 2020 | UNIS Kolga | - | 11 |
Matchup Date | In-Situ Timing (UTC) | Sentinel-2 Acquisition (UTC) | ||
---|---|---|---|---|
Start | End | S2A | S2B | |
14 June 2019 | 10:48 | 13:18 | 12:57 | 12:06 |
06 August 2019 | 11:49 | 14:17 | 13:07 | 12:16 |
17 July 2020 | 11:14 | 13:46 | -- | 12:37 |
30 July 2020 | 11:03 | 14:23 | 11:58 | 12:47 |
MRD | RMSD | Bias | |||
---|---|---|---|---|---|
NeCal | A: 355.85, B: 1.74, C: 0.1728 | 47.5% | 23.3% | −17.87 | 0.55 |
AdvFCal | A: 523.78, B: 1.97, C: 0.158 | 29.1% | 15.9% | −7.72 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walch, D.M.R.; Singh, R.K.; Søreide, J.E.; Lantuit, H.; Poste, A. Spatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series. Remote Sens. 2022, 14, 3123. https://doi.org/10.3390/rs14133123
Walch DMR, Singh RK, Søreide JE, Lantuit H, Poste A. Spatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series. Remote Sensing. 2022; 14(13):3123. https://doi.org/10.3390/rs14133123
Chicago/Turabian StyleWalch, Daniela M. R., Rakesh K. Singh, Janne E. Søreide, Hugues Lantuit, and Amanda Poste. 2022. "Spatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series" Remote Sensing 14, no. 13: 3123. https://doi.org/10.3390/rs14133123
APA StyleWalch, D. M. R., Singh, R. K., Søreide, J. E., Lantuit, H., & Poste, A. (2022). Spatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series. Remote Sensing, 14(13), 3123. https://doi.org/10.3390/rs14133123