Dim and Small Target Detection Based on Improved Hessian Matrix and F-Norm Collaborative Filtering
<p>Details of the constructed local gradient model.</p> "> Figure 2
<p>Flow chart of Hessian matrix background suppression model with local gradient significance.</p> "> Figure 3
<p>Overall flow chart of detection model.</p> "> Figure 4
<p>Sequence scene original, original 3D.</p> "> Figure 5
<p>(<b>a</b>–<b>j</b>): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method’s difference diagram and three-dimensional diagram in scene A, respectively.</p> "> Figure 6
<p>(<b>a</b>–<b>j</b>): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method’s difference diagram and three-dimensional diagram in scene B, respectively.</p> "> Figure 7
<p>(<b>a</b>–<b>j</b>): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method’s difference diagram and three-dimensional diagram in scene C, respectively.</p> "> Figure 8
<p>(<b>a</b>–<b>j</b>): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method’s difference diagram and three-dimensional diagram in scene D, respectively.</p> "> Figure 9
<p>(<b>a</b>–<b>j</b>): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method’s difference diagram and three-dimensional diagram in scene E, respectively.</p> "> Figure 10
<p>(<b>a</b>–<b>j</b>): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method’s difference diagram and three-dimensional diagram in scene F, respectively.</p> "> Figure 11
<p>Comparison diagram of energy-enhancement model of local multi-scale gradient maximum before and after energy enhancement for 6 scenes.</p> "> Figure 12
<p>Panels (<b>a1</b>–<b>j1</b>) shows the detection results of sequence A of top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.</p> "> Figure 13
<p>Panels (<b>a1</b>–<b>j1</b>) shows the detection results of sequence B of top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.</p> "> Figure 14
<p>Panels (<b>a1</b>–<b>j1</b>) shows the detection results of sequence C of top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.</p> "> Figure 15
<p>Panels (<b>a1</b>–<b>j1</b>) shows the detection results of sequence D of top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.</p> "> Figure 16
<p>Panels (<b>a1</b>–<b>j1</b>) shows the detection results of sequence E of top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.</p> "> Figure 17
<p>Panels (<b>a1</b>–<b>j1</b>) shows the detection results of sequence F of top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.</p> "> Figure 18
<p>Detection results of the FNPC detection model.</p> "> Figure 19
<p>Schematic of ROC curves for 10 model detection models in 6 sequence scenarios.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Improve the Background Modeling Principle of Hessian Matrix
2.2. Energy-Enhancement Principle Based on Local Multi-Scale Gradient Maxima
2.3. Detection Model of F-Norm and Pasteur Coefficient Collaborative Filtering
2.4. Summary of the Overall Process of the Algorithm
2.5. Technical Evaluation Index
2.6. Experimental Setup
3. Results
3.1. Comparison and Analysis of IHMM Model Background Modeling Results
3.2. Result Analysis of Target Detection Energy-Enhancement Model Based on Local Multi-Scale Gradient Maxima
3.3. Analysis of Indicators of Model Background Suppression Results
3.4. Analysis of Multi-Frame Target Detection Results
3.5. Analysis of ROC Indicators
3.6. Comparison of Computational Model Complexity
4. Discussion
5. Conclusions
- (1)
- The proposed IHMM detection model can retain the target signal when performing background suppression in the complex scenes. Compared with traditional methods, the SSIM, SRN, and IC indexes are greater than 0.9999, 47.4750 dB, and 12.1008 dB, respectively.
- (2)
- The proposed LMGM model can significantly improve the signal-to-noise ratio of the target in the difference image, and the target energy-enhancement effect of the LMGM model reached 17.9850 dB in six scenes.
- (3)
- The FNPC model proposed in this paper can maintain a high detection rate when the false alarm rate is low, and when the false alarm rate is 0.01%, the detection rate of the FNPC model reaches 100% in all scenes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IHMM | Improved Hessian matrix background modeling |
LMGM | Local multi-scale gradient maxima |
FNPC | F-norm and Pasteur correlation |
ANI | Anisotropy |
PSTNN | Partial sum of tensor nuclear norm |
ASTTV | Asymmetric spatial–temporal total variation |
GST | Generalized structure tensor |
NTFRA | Non-convex tensor fibered rank approximation |
NRAM | Non-convex rank approximation minimization |
HB-MLCM | High-boost-based multi-scale local contrast measure |
ADMD | Absolute directional mean difference |
SSIM | Structural similarity image |
SNR | Signal-to-noise ratio |
IC | Contrast gain |
References
- Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A Local Contrast Method for Small Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 574–581. [Google Scholar] [CrossRef]
- Tang, Z.Y. Research on Infrared Small Target Detection and Tracking Algorithm Based on Image Sparse Representation; Shanghai Jiaotong University: Shanghai, China, 2012; pp. 1–16. [Google Scholar]
- Yang, X.; Zhou, Y.; Zhou, D.; Yang, R.; Hu, Y. A new infrared small and dim target detection algorithm based on multi-directional composite window. Infrared Phys. Technol. 2015, 71, 402–407. [Google Scholar] [CrossRef]
- Hua, X.; Ono, Y.; Peng, L.; Xu, Y. Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous Clutter. IEEE Trans. Commun. 2022, 70, 4107–4120. [Google Scholar] [CrossRef]
- Liu, J.; Sun, S.Y.; Liu, W.J. One-step persymmetric GLRT for subspace signals. IEEE Trans. Signal Process. 2019, 67, 3639–3648. [Google Scholar] [CrossRef]
- Deng, L.Z.; Zhang, J.K.; Xu, G.X.; Zhu, H. Infrared small target detection via adaptive M-estimator ring top-hat transformation. Pattern Recognit. 2021, 112, 1–9. [Google Scholar] [CrossRef]
- Lu, F.X.; Li, J.Y.; Chen, Q.; Chen, G.L.; Rao, P. PM model dim small target detection based on Top-Hat transform. Syst. Eng. Electron. 2018, 7, 1417–1421. [Google Scholar]
- Peng, S. Research on Infrared Dim Small Target Detection Algorithm Based on Space-Time Filtering; University of Electronic Science and Technology: Chengdu, China, 2020. [Google Scholar]
- Chen, Y.; Hao, Y.G.; Wang, H.Y.; Wang, K. Dynamic Programming Track-Before-Detect Algorithm Based on Local Gradient and Intensity Map. Comput. Sci. 2021, 1433, 1–12. [Google Scholar]
- Lin, Q.; Huang, S.C.; Wu, X.; Zhong, Y. Infrared small target detection based on nuclear anisotropic diffusion. Intense Excit. Part. Beams 2015, 27, 0110141–0110144. [Google Scholar]
- Wang, Y.H.; Liu, W.N. Dim Target Enhancement Algorithm for Low-contrast Image based on Anisotropic Diffusion. Opto-Electron. Eng. 2008, 35, 15–19. [Google Scholar]
- Wang, C.; Wang, L. Multidirectional Ring Top-Hat Transformation for Infrared Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8077–8088. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, S.; Deng, L.; Li, Y.; Xiao, F. Infrared Small Target Detection via Low-Rank Tensor Completion With Top-Hat Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1004–1016. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Singh, G.; Manickam, S.; Yamaguchi, Y. An adaptive general four-component scattering power decomposition with unitary transformation of coherency matrix (AG4U). IEEE GRSL 2015, 12, 2110–2115. [Google Scholar] [CrossRef]
- Muhuri, A.; Manickam, S.; Bhattacharya, A. Snow cover mapping using polarization fraction variation with temporal RADARSAT-2 C-band full-polarimetric SAR data over the Indian Himalayas. IEEE JSTARS 2018, 11, 2192–2209. [Google Scholar] [CrossRef]
- Touzi, R.; Vachon, P.W. RCM polarimetric SAR for enhanced ship detection and classification. Can. J. Remote Sens. 2015, 41, 473–484. [Google Scholar] [CrossRef]
- Liu, J.; He, Z.; Chen, Z.; Shao, L. Tiny and Dim Infrared Target Detection Based on Weighted Local Contrast. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1780–1784. [Google Scholar] [CrossRef]
- Xia, C.Q.; Li, X.R.; Zhao, L.Y.; Shu, R. Infrared Small Target Detection Based on Multiscale Local Contrast Measure Using Local Energy Factor. IEEE Geosci. Remote Sens. Lett. 2020, 17, 157–161. [Google Scholar] [CrossRef]
- Shi, Y.F.; Wei, Y.T.; Yao, H.; Pan, D.H.; Xiao, G.R. High-Boost-Based Multiscale Local Contrast Measure for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2018, 15, 33–37. [Google Scholar] [CrossRef]
- Liu, Z.X.; H, W.L.; He, C.M. Sparse reconstruction algorithm based on new Hessian approximation matrix. Math. Pract. Theory 2019, 49, 167–177. [Google Scholar]
- Candes, E.J.; Li, X.D.; Yi, M.; John, W. Robust principal component analysis Recovering low-rank matrices from sparse errors. IEEE Sens. Array Multichannel Signal Process. Workshop 2010, 4, 201–204. [Google Scholar]
- Lin, Z.C.; Chen, M.M.; Yi, M. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv 2013, arXiv:1009.5055. [Google Scholar]
- Zhang, L.D.; Peng, Z.M. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Wei, Y.T.; You, X.G.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Qin, Y.; Bruzzone, L.; Gao, C.Q.; Li, B. Infrared Small Target Detection Based on Facet Kernel and Random Walker. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7104–7118. [Google Scholar] [CrossRef]
- Liu, T.; Yang, J.G.; Li, B.Y.; Xiao, C. Non-Convex Tensor Low-Rank Approximation for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar]
- Dai, Y.M.; Wu, Y.Q. Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5000. [Google Scholar] [CrossRef]
- Hou, Q.Y.; Wang, Z.P.; Tan, F.J.; Zhao, Y.; Zheng, H.L.; Zhang, W. RISTDnet: Robust Infrared Small Target Detection Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Ding, L.H.; Xu, X.; Cao, Y.; Zhai, G.T.; Yang, F.; Qian, L. Detection and tracking of infrared small target by jointly using SSD and pipeline filter. Digit. Signal Process. 2021, 110, 102949. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C. SSD: Single Shot MultiBox Detector; Springer International Publishing AG: Dordrecht, The Netherlands, 2016; Volume ECVV 2016, pp. 21–27. [Google Scholar]
- Zhao, D.; Zhou, H.X.; Rong, S.H. An Adaptation of Cnn for Small Target Detection in the Infrared. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Zhao, B.; Wang, C.P.; Fu, Q.; Han, Z.S. A Novel Pattern for Infrared Small Target Detection With Generative Adversarial Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4481–4492. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; 1504, pp. 1440–1448. [Google Scholar]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Li, F. A method of fringe center extraction based on Hessian matrix and gradient variance. Comput. Digit. Eng. 2020, 48, 1–6. [Google Scholar]
- Zhang, N.N. Multiscale Solar Chromosphere Fiber Recognition Algorithm Based on Bilateral Filtering and Hessian Matrix; Kunming University of Technology: Kunming, China, 2021. [Google Scholar]
- Ren, L.J.; Mahmood, R. Dim Target Detection and Clutter Rejection Using Modified High Order Correlation. IEEE Int. Jt. Conf. Neural Netw. 1992, 4, 289–294. [Google Scholar]
- Nanbara, J.H.; Mahmood, R. Target Detection Utilizing Neural Nteworks and Modified High-order Correlation Method. SPIE 1995, 2496, 687–697. [Google Scholar]
- Tzannes, A.P.; Brooks, D.H. Detecting Small Moving Objects Using Temporal Hypothesis Testing. IEEE Trans. Aerosp. Electron. Syst. 2001, 38, 570–584. [Google Scholar] [CrossRef]
- Zhao, X.M.; Yuan, S.C.; Ma, Q.L.; Qi, L.L. Research on infrared small target detection method based on mobile pipeline filter. Infrared Phys. Technol. 2009, 31, 295–297. [Google Scholar]
- Liu, J.; Ji, H.B. Infrared weak target detection based on moving weighted pipe filtering. J. Xidian Univ. 2007, 34, 743–745. [Google Scholar]
- Yang, J.H.; Liu, F.A. Collaborative filtering algorithm based on Bhattacharyya coefficient and Jaccard coefficient. J. Comput. Appl. 2016, 36, 2007–2010. [Google Scholar]
- Wu, W.Q.; Wang, J.F.; Zhang, P.F.; Liu, Y.L. A collaborative filtering algorithm based on improved similarity of Pasteur correlation coefficient. Comput. Appl. Softw. 2017, 34, 265–275. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Procrssing, 3rd ed.; Pearson International Editio: Bengaluru, India, 2007; Chapter 10; pp. 711–715. [Google Scholar]
- Zong, S.G.; Wang, J.A.; Ma, Z.G. A new dual band target detection algorithm in strong clutter. Infrared Technol. 2005, 1, 57–61. [Google Scholar]
- Abdelkawy, E.; Mcgaughy, D. Small IR Target Detection using Fast Orthogonal Search. SPIE 2005, 5807, 67–76. [Google Scholar]
- Zhang, Q.; Cai, J.J.; Zhang, Q.H.; Zhao, R.J. Small Dim Infrared Targets Segmentation Method Based on Local Maximum. Infrared Technol. 2011, 33, 41–45. [Google Scholar]
- Yang, Y. Research on Small Target Detection and Recognition Technology; Institute of Optoelectronics Technology, Chinese Academy of Sciences: Beijing, China, 2005. [Google Scholar]
- Zhang, M.; Dong, L.; Zheng, H.; Xu, W. Infrared maritime small target detection based on edge and local intensity features. Infrared Phys. Technol. 2021, 119, 103940. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Hui, B.W.; Song, Z.Y.; Fan, H.Q.; Zhong, P.; Hu, W.D.; Zhang, X.F. Ground_ Infrared image dim small aircraft target detection and tracking data set in empty background. China Sci. Data 2020, 5, 1–12. [Google Scholar]
- Sun, X.L.; Guo, L.C.; Zhang, W.L.; Wang, Z.; Hou, Y.J. Infrared dim moving target detection data set in complex background. China Sci. Data 2020, 10, 1–19. [Google Scholar]
- Li, D.W. Infrared Dim Small Target Detection in Complex Background; Harbin Institute of Technology: Harbin, China, 2013. [Google Scholar]
- Li, J.L.; Fan, X.S.; Chen, H.J.; Li, B.; Min, L.; Xu, Z.Y. Dim and Small Target Detection Based on Improved Spatiotemporal Filtering. IEEE Photonics J. 2022, 14, 1–11. [Google Scholar]
- Kong, X.; Yang, C.; Cao, S.; Li, C.; Peng, Z. Infrared Small Target Detection via Nonconvex Tensor Fibered Rank Approximation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–21. [Google Scholar] [CrossRef]
- Gao, C.Q.; Tian, J.W.; Wang, P. Generalised-structure-tensor-based infrared small target detection. Electron. Lett. 2008, 44, 1349–1351. [Google Scholar] [CrossRef]
- Zhang, L.D.; Peng, L.B.; Zhang, T.F.; Cao, S.Y.; Peng, Z.M. Infrared Small Target Detection via Non-Convex Rank Approximation Minimization Joint l2,1 Norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef]
- Moradi, S.; Moallem, P.; Sabahi, M.F. Fast and robust small infrared target detection using absolute directional mean difference algorithm. Signal Process. 2020, 177, 107727. [Google Scholar] [CrossRef]
- Wang, H.N.; Cao, P.; Wang, J.Q.; Zaiane, O.R. UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22), Virtual, 22 February–1 March 2022; Volume 36, pp. 2441–2449. [Google Scholar]
Step 1. Input the image P which outputs with improved Hessian matrix. |
Step 2. Use multi-scale gradient to enhance the energy of image P and output the enhancement results in direction. |
Step3. Initialization parameters = [ ]; threshold ; statistical parameters ; candidate target storage matrix ; constant for judging segmentation ; image after segmentation . |
Step 4. Compare the 4 directions’ results in with the set threshold to update the statistical parameter as follows: |
= |
Step 5. Use the following judgment pair and the count number to judge whether it meets the requirements as a candidate target and update num: |
= 0 |
= |
Step 6. With num, segment candidate targets and output the as follows: |
= 1 |
= |
= 0 |
= |
Step 7. end |
Step 1. Input sequence images; |
Step 2. Determine parameters M and X in Formula (2) operation, and initialize parameter Z in Formula (1) value as 5; |
Step3. Use Formulas (1) and (2) to calculate the local significance of the target, and then combine Formulas (3)–(8) to finish background modeling and output the difference image P in Formula (8); |
Step 4. Complete the energy enhancement with Formulas (9) and (10) and pseudocode in Table 1 and output the energy-enhanced image; |
Step 5. Define Formulas (11) and (12) to enhance the difference between target region and background region. In addition, input the target coordinates according to the different enhanced scenes for Formula (13); |
Step 6. Utilize Formula (13) to calculate the distance between candidate target and real target coordinate from Step 5, and similarity between candidate target region and real target region; |
Step 7. Unite Formula (14) to fulfill sequence detection and output target’s trajectory; |
Step 8. end |
Sequence | Sequence Size | Target Size | Image Size | Target Details |
---|---|---|---|---|
Sequence A | 296 frames | 2 × 2 | 621 × 501 | UAV in complex clouds. |
Sequence B | 100 frames | 2 × 2 | 256 × 152 | UAV movement in air and ground background. |
Sequence C | 302 frames | 3 × 3 | 481 × 251 | UAV motion in dark bright layered background. |
Sequence D | 876 frames | 2 × 2 | 481 × 251 | UAV motion in dark bright layered background. |
Sequence E | 300 frames | 3 × 3 | 640 × 512 | UAV movement in air and ground background. |
Sequence F | 300 frames | 3 × 3 | 640 × 512 | UAV in complex clouds. |
Method | Index |
---|---|
Top hat [55] | Structure shape: structure size 3 × 3, db = [0 1 1 1 0, 1 0 0 0 1, 1 0 0 0 1, 1 0 0 0 1, 0 1 1 1 0]; b = [0 1 1 0, 1 1 1 1, 1 1 1 1, 0 1 1 0]; |
ANI [56] | ; |
PSTNN [23] | Patch size , slid step , ; |
ASTTV [26] | ; |
GST [58] | , boundarywidth , filtersize ; |
NTFRA [57] | Patch size , slid step , step ; |
NRAM [59] | Patch size , slid step ; |
HBMLCM [19] | ; |
ADMD [60] | ; |
Proposed | ; |
Method | Top Hat [55] | ANI [56] | PSTNN [23] | ASTTV [26] | GST [58] | NTFRA [57] | NRAM [59] | HBMLCM [19] | ADMD [60] | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
Index | ||||||||||
SSIM | 0.9941 | 0.9939 | 0.9985 | 1.0000 | 1.0000 | 0.9994 | 1.0000 | 0.9946 | 0.9893 | 1.0000 |
SNR | 3.8100 | 2.8800 | 15.6600 | 61.5200 | 18.8900 | 10.0700 | 47.3400 | 39.7800 | 21.4000 | 61.8600 |
IC | 16.1528 | 13.7604 | 20.5339 | 22.2776 | 18.9766 | 20.5339 | 20.5339 | 19.0612 | 20.4495 | 20.5339 |
Method | Top Hat [55] | ANI [56] | PSTNN [23] | ASTTV [26] | GST [58] | NTFRA [57] | NRAM [59] | HBMLCM [19] | ADMD [60] | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
Index | ||||||||||
SSIM | 0.9937 | 0.9968 | 0.9638 | 1.0000 | 1.0000 | 0.9987 | 0.9630 | 0.9708 | 0.9768 | 1.0000 |
SNR | 3.3600 | 4.5400 | 17.8100 | 21.9100 | 24.5100 | 10.1400 | 20.5500 | 12.3500 | 22.0600 | 21.8000 |
IC | 9.9217 | 10.4831 | 15.9631 | 12.4000 | 15.6710 | 16.1449 | 16.702 | 15.0016 | 16.5134 | 16.7027 |
Method | Top Hat [55] | ANI [56] | PSTNN [23] | ASTTV [26] | GST [58] | NTFRA [57] | NRAM [59] | HBMLCM [19] | ADMD [60] | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
Index | ||||||||||
SSIM | 0.9994 | 0.9994 | 0.9721 | 1.0000 | 1.0000 | 0.9990 | 0.9769 | 0.9995 | 0.9992 | 0.9999 |
SNR | 26.8900 | 20.7600 | 39.4000 | 51.1700 | 61.3500 | 13.5900 | 35.3100 | 44.2800 | 44.5300 | 16.4200 |
IC | 3.8400 | 4.6761 | 4.3805 | 3.0965 | 2.0393 | 4.3658 | 4.5744 | 5.8280 | 6.4572 | 9.5680 |
Method | Top Hat [55] | ANI [56] | PSTNN [23] | ASTTV [26] | GST [58] | NTFRA [57] | NRAM [59] | HBMLCM [19] | ADMD [60] | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
Index | ||||||||||
SSIM | 0.9993 | 0.9990 | 0.9914 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9995 | 0.9988 | 1.0000 |
SNR | 17.4400 | 16.1000 | 69.5300 | 0.0200 | 54.2700 | 38.6000 | 50.4700 | 60.7200 | 35.9000 | 34.6400 |
IC | 1.0000 | 1.0000 | 1.0393 | 1.1818 | 1.0495 | 1.0754 | 1.0754 | 0.8697 | 0.9655 | 1.1394 |
Method | Top Hat [55] | ANI [56] | PSTNN [23] | ASTTV [26] | GST [58] | NTFRA [57] | NRAM [59] | HBMLCM [19] | ADMD [60] | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
Index | ||||||||||
SSIM | 0.9968 | 0.9993 | 0.9845 | 0.9921 | 1.0000 | 0.9947 | 0.9907 | 0.9988 | 0.9987 | 1.0000 |
SNR | 8.0200 | 5.1500 | 25.8300 | 11.1000 | 68.4700 | 5.6600 | 56.8500 | 61.8400 | 44.5600 | 50.2900 |
IC | 11.7408 | 10.8942 | 15.8657 | 16.9196 | 14.9649 | 13.7152 | 15.8657 | 13.2639 | 14.4949 | 16.0730 |
Method | Top Hat [55] | ANI [56] | PSTNN [23] | ASTTV [26] | GST [58] | NTFRA [57] | NRAM [59] | HBMLCM [19] | ADMD [60] | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
Index | ||||||||||
SSIM | 0.9960 | 0.9976 | 0.9836 | 0.9998 | 1.0000 | 0.9996 | 0.9835 | 0.9996 | 0.9983 | 1.0000 |
SNR | 6.6800 | 3.7200 | 28.7300 | 16.6500 | 68.9500 | 22.9000 | 60.4100 | 110.5600 | 53.6400 | 57.1600 |
IC | 5.9050 | 4.5500 | 8.2615 | 7.8955 | 7.7495 | 7.6748 | 8.2615 | 6.8528 | 7.0710 | 8.3680 |
Method | Top Hat [55] | ANI [56] | PSTNN [23] | ASTTV [26] | GST [58] | NTFRA [57] | NRAM [59] | HBMLCM [19] | ADMD [60] | UCTransnet [61] | Pro |
---|---|---|---|---|---|---|---|---|---|---|---|
Time Consumption | |||||||||||
Scence A | 0.1555 | 1.1242 | 1.7371 | 59.2074 | 0.1092 | 7.9126 | 38.6607 | 0.1705 | 0.1756 | 440.7594 | 4.3726 |
Scence B | 0.0631 | 0.1420 | 0.2326 | 5.9643 | 0.0230 | 1.4706 | 1.6768 | 0.0699 | 0.0920 | 151.5486 | 0.5156 |
Scence C | 0.0578 | 0.4358 | 0.3205 | 19.5844 | 0.0516 | 5.8255 | 10.5272 | 0.1373 | 0.1787 | 439.0609 | 1.5982 |
Scence D | 0.1104 | 0.8034 | 0.6351 | 19.2231 | 0.0556 | 5.3351 | 11.0282 | 0.1076 | 0.1572 | 1080.6195 | 2.9033 |
Scence E | 0.1098 | 2.0828 | 3.2974 | 58.1772 | 0.0946 | 10.8307 | 44.9906 | 0.1675 | 0.2001 | 195.0051 | 8.0268 |
Scence F | 0.1209 | 2.0691 | 2.6908 | 56.4643 | 0.0717 | 10.8489 | 38.7814 | 0.1723 | 0.2245 | 195.0051 | 7.7177 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Li, J.; Chen, H.; Min, L.; Li, F. Dim and Small Target Detection Based on Improved Hessian Matrix and F-Norm Collaborative Filtering. Remote Sens. 2022, 14, 4490. https://doi.org/10.3390/rs14184490
Fan X, Li J, Chen H, Min L, Li F. Dim and Small Target Detection Based on Improved Hessian Matrix and F-Norm Collaborative Filtering. Remote Sensing. 2022; 14(18):4490. https://doi.org/10.3390/rs14184490
Chicago/Turabian StyleFan, Xiangsuo, Juliu Li, Huajin Chen, Lei Min, and Feng Li. 2022. "Dim and Small Target Detection Based on Improved Hessian Matrix and F-Norm Collaborative Filtering" Remote Sensing 14, no. 18: 4490. https://doi.org/10.3390/rs14184490