Bayesian Posterior-Based Winter Wheat Yield Estimation at the Field Scale through Assimilation of Sentinel-2 Data into WOFOST Model
"> Figure 1
<p>Map of study area and distribution of sampling sites during the growth period. The background is acquired from Google base map. The winter wheat mask is obtained from Dong et al. [<a href="#B26-remotesensing-14-03727" class="html-bibr">26</a>]. The green, yellow, and orange pushpins represent the sampling points from late March to early April, early May, and from late May to early June, respectively. The blue boundary represents the selected fields for sampling.</p> "> Figure 2
<p>Schematic diagram of Sentinel-2 and Landsat-8 satellite transits over the study area from the beginning of March to the end of May. The green line indicates complete coverage of the study area, and the gray line indicates partial coverage.</p> "> Figure 3
<p>Schematic diagram outlining the major process for winter wheat yield estimation.</p> "> Figure 4
<p>Schematic overview of the major processes of the WOFOST model [<a href="#B30-remotesensing-14-03727" class="html-bibr">30</a>].</p> "> Figure 5
<p>Schematic diagram of abnormal valley smoothing.</p> "> Figure 6
<p>Result of LAI modeling and validation. (<b>a</b>) Relationship between NDVI and LAI of winter wheat in the study area. (<b>b</b>) Validation of the LAI model.</p> "> Figure 7
<p>Result of LAI inversion every ten days from 9 March to 28 May in the study area.</p> "> Figure 8
<p>Plot of likelihood value and Gelman–Rubin diagnostic with Markov chain runs.</p> "> Figure 9
<p>Posterior uncertainty of WOFOST model outputs after the convergence of MCMC.</p> "> Figure 10
<p>Posterior uncertainty of WOFOST model parameters after the convergence of MCMC. The subplots on the diagonal of the corner plot show the one-dimensional posterior distributions of calibrated parameters, with a solid blue vertical line to indicate the maximum likelihood value and a dashed black line to indicate the median value of the posterior of parameters. The other density plots are two-dimensional projections of the posterior probability distributions for each pair of parameters.</p> "> Figure 11
<p>Model validation with the maximum likelihood results.</p> "> Figure 12
<p>Map of estimated winter wheat yield of the study area and MAPE for each validation field.</p> "> Figure 13
<p>Scatterplots of the simulated yield and measured yield within fields by county.</p> "> Figure 14
<p>Scatterplots of the simulated yield and field yield within fields of all counties except for the area with lodging of wheat.</p> "> Figure 15
<p>Scatterplots of the official statistical yield for 2016 and 2017.</p> ">
Abstract
:1. Introduction
2. Data
2.1. County-Level Yield Statistics
2.2. Field Observation Data
2.3. Remote-Sensing Data
2.4. Meteorological Data
3. Methods
3.1. WOFOST Model
3.2. DREAM Algorithm
3.3. Remote-Sensing NDVI-Based LAI Inversion
3.4. Yield Estimates Based on Bayesian Posterior Ensembles and Remote-Sensing LAI
3.5. Statistical Evaluation
4. Results
4.1. Remotely Sensed LAI
4.2. Bayesian Posterior Uncertainty Exploration of WOFOST with DREAM Method
4.3. Yield Estimation Accuracy Evaluation and Uncertainty Analysis
5. Discussion
5.1. Can Yield Variability Be Explained by LAI?
5.2. The Role of County-Level Yield Statistics and Their Potential Improvement
5.3. Multiple Remote-Sensing Variables Matching-Based Yield Estimates
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benami, E.; Jin, Z.; Carter, M.R.; Ghosh, A.; Hijmans, R.J.; Hobbs, A.; Kenduiywo, B.; Lobell, D.B. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2021, 2, 140–159. [Google Scholar] [CrossRef]
- Moulin, S.; Bondeau, A.; Delecolle, R. Combining agricultural crop models and satellite observations: From field to regional scales. Int. J. Remote Sens. 1998, 19, 1021–1036. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agr. Forest Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Carfagna, E. Review of crop yield forecasting methods and early warning systems. In Proceedings of the First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics, Rome, Italy, 18–19 July 2013; FAO Headquarters: Rome, Italy, 2013. [Google Scholar]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A comparison of global agricultural monitoring systems and current gaps. Agr. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Maestrini, B.; Basso, B. Predicting spatial patterns of within-field crop yield variability. Field Crops Res. 2018, 219, 106–112. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring Within-Field Variability of Corn Yield using Sentinel-2 and Machine Learning Techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Kalecinski, N.I.; Brown, M.G.L.; Johnson, D.M.; Vermote, E.F.; Roger, J.; Franch, B. Assessing within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery. Remote Sens. 2021, 13, 872. [Google Scholar] [CrossRef]
- Segarra, J.; Araus, J.L.; Kefauver, S.C. Farming and Earth Observation: Sentinel-2 data to estimate within-field wheat grain yield. Int. J. Appl. Earth Obs. 2022, 107, 102697. [Google Scholar] [CrossRef]
- de Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 years of the WOFOST cropping systems model. Agr. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Holzworth, D.P.; Snow, V.; Janssen, S.; Athanasiadis, I.N.; Donatelli, M.; Hoogenboom, G.; White, J.W.; Thorburn, P. Agricultural production systems modelling and software: Current status and future prospects. Environ. Model. Softw. Environ. Data News 2015, 72, 276–286. [Google Scholar] [CrossRef]
- Zhuo, W.; Fang, S.; Gao, X.; Wang, L.; Wu, D.; Fu, S.; Wu, Q.; Huang, J. Crop yield prediction using MODIS LAI, TIGGE weather forecasts and WOFOST model: A case study for winter wheat in Hebei, China during 2009–2013. Int. J. Appl. Earth Obs. 2022, 106, 102668. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agr. Forest Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.; Li, X.; Zhuo, W.; Wu, Y.; Niu, Q.; Su, W.; Yuan, W. A dataset of winter wheat aboveground biomass in China during 2007–2015 based on data assimilation. Sci. Data 2022, 9, 200. [Google Scholar] [CrossRef]
- Kang, Y.; Özdoğan, M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sens. Environ. 2019, 228, 144–163. [Google Scholar] [CrossRef]
- Ji, F.; Meng, J.; Cheng, Z.; Fang, H.; Wang, Y. Crop Yield Estimation at Field Scales by Assimilating Time Series of Sentinel-2 Data Into a Modified CASA-WOFOST Coupled Model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4400914. [Google Scholar] [CrossRef]
- Silvestro, P.; Pignatti, S.; Pascucci, S.; Yang, H.; Li, Z.; Yang, G.; Huang, W.; Casa, R. Estimating Wheat Yield in China at the Field and District Scale from the Assimilation of Satellite Data into the Aquacrop and Simple Algorithm for Yield (SAFY) Models. Remote Sens. 2017, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Manivasagam, V.S.; Sadeh, Y.; Kaplan, G.; Bonfil, D.J.; Rozenstein, O. Studying the Feasibility of Assimilating Sentinel-2 and PlanetScope Imagery into the SAFY Crop Model to Predict Within-Field Wheat Yield. Remote Sens. 2021, 13, 2395. [Google Scholar] [CrossRef]
- Gaso, D.V.; de Wit, A.; Berger, A.G.; Kooistra, L. Predicting within-field soybean yield variability by coupling Sentinel-2 leaf area index with a crop growth model. Agr. Forest Meteorol 2021, 308–309, 108553. [Google Scholar] [CrossRef]
- Ziliani, M.G.; Altaf, M.U.; Aragon, B.; Houburg, R.; Franz, T.E.; Lu, Y.; Sheffield, J.; Hoteit, I.; McCabe, M.F. Early season prediction of within-field crop yield variability by assimilating CubeSat data into a crop model. Agr. Forest Meteorol. 2022, 313, 108736. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- Zhao, G.; He, D.; Yao, S. Heibei Rural Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Zhao, G.; He, D.; Yao, S. Heibei Rural Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Hor, A.; Nyi, A.A.S.; Mu, N.; Oz-Sabater, J.I.N.; Nicolas, J.; Peubey, C.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- de Wit, A.; Boogaard, H.L.; Supit, I.; van den Berg, M. System Description of the WOFOST 7.2 Cropping Systems Model.; Wageningen Environmental Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Vrugt, J.A. Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environ. Model. Softw. Environ. Data News 2016, 75, 273–316. [Google Scholar] [CrossRef] [Green Version]
- Laloy, E.; Vrugt, J.A. High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing. Water Resour. Res. 2012, 48, W01526. [Google Scholar] [CrossRef] [Green Version]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Vrugt, J.A.; Ter Braak, C.J.F.; Diks, C.G.H.; Robinson, B.A.; Hyman, J.M.; Higdon, D. Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling. Int. J. Nonlin. Sci. Num. 2009, 10, 273–290. [Google Scholar] [CrossRef]
- Houska, T.; Kraft, P.; Chamorro-Chavez, A.; Breuer, L. SPOTting Model Parameters Using a Ready-Made Python Package. PLoS ONE 2015, 10, e145180. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Pepe, M.; Nelson, A. Remote sensing-based crop lodging assessment: Current status and perspectives. ISPRS J. Photogramm. 2019, 151, 124–140. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches. Remote Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Lin, T.; Zhong, R.; Wang, Y.; Xu, J.; Jiang, H.; Xu, J.; Ying, Y.; Rodriguez, L.; Ting, K.C.; Li, H. DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation. Environ. Res. Lett. 2020, 15, 34016. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, H.; Zhong, R.; Xu, J.; Xu, J.; Huang, J.; Wang, S.; Ying, Y.; Lin, T. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level. Glob. Chang. Biol. 2020, 26, 1754–1766. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, W.; Huang, J.; Xiao, X.; Huang, H.; Bajgain, R.; Wu, X.; Gao, X.; Wang, J.; Li, X.; Wagle, P. Assimilating remote sensing-based VPM GPP into the WOFOST model for improving regional winter wheat yield estimation. Eur. J. Agron. 2022, 139, 126556. [Google Scholar] [CrossRef]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agr. Forest Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating Soil Moisture Retrieved from Sentinel-1 and Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation. Remote Sens. 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
Parameters | Description | Initial Values | Optimized Values and Implementation |
---|---|---|---|
IDEM | Emergence date | 19 October 2016 | 19 October 2016 + β_IDEM |
TSUM1 | The thermal time from emergence to anthesis | 650 | 650 × α_TSUM1 |
TSUM2 | The thermal time from anthesis to maturity | 950 | 950 × α_TSUM2 |
TDWI | Initial total crop dry weight | 50 | 50.0 × α_TDWI |
SPAN | The life span of leaves growing at an average temperature of 35 °C | 31.3 | 31.3 × α_SPAN |
SLATB | Specific leaf area as a function of development stage | [0.00, 0.00212, | [0.00, 0.00212 × α_SLATB, |
0.50, 0.00212, | 0.50, 0.00212 × α_SLATB, | ||
2.00, 0.00212] | 2.00, 0.00212 × α_SLATB] | ||
AMAXTB | Maximum CO2 assimilation rate as a function of development stage of the crop | [0.00, 35.83, | [0.00, 35.83 × α_AMAXTB, |
1.00, 35.83, | 1.00, 35.83 × α_AMAXTB, | ||
1.30, 35.83, | 1.30, 35.83 × α_AMAXTB, | ||
2.00, 4.48] | 2.00, 4.48 × α_AMAXTB] | ||
FLTB | Fraction of total dry matter to leaves as a function of DVS | [0.000, 0.650, | [0.000, 0.650 × α_v, |
0.100, 0.650, | 0.100, 0.650 × α_v, | ||
0.250, 0.700, | 0.250, 0.700 × α_v, | ||
0.500, 0.500, | 0.500, 0.500 × α_v, | ||
0.646, 0.300, | 0.646, 0.300 × α_v, | ||
0.950, 0.000, | 0.950 + β_DVS, 0.000, | ||
2.000, 0.000] | 2.000, 0.000] | ||
FOTB | Fraction of total dry matter to storage organs as a function of DVS | [0.000, 0.000, | [0.000, 0.000, |
0.950, 0.000, | 0.950 + β_DVS, 0.000, | ||
1.000, 1.000, | 1.000 + β_DVS, 1.000, | ||
2.000, 1.000] | 2.000, 1.000] | ||
FSTB | Fraction of total dry matter to stems as a function of DVS | [0.000, 0.350, | [0.000, 1 − 0.650 × α_v, |
0.100, 0.350, | 0.100, 1 − 0.650 × α_v, | ||
0.250, 0.300, | 0.250, 1 − 0.700 × α_v, | ||
0.500, 0.500, | 0.500, 1 − 0.500 × α_v, | ||
0.646, 0.700, | 0.646, 1 − 0.700 × α_v, | ||
0.950, 1.000, | 0.950 + β_DVS, 1.000, | ||
1.000, 0.000, | 1.000 + β_DVS, 0.000, | ||
2.000, 0.000] | 2.000, 0.000] |
Optimized Variables | First Guess | Lower Bound | Upper Bound |
---|---|---|---|
β_IDEM | 0 | −5 | 5 |
α_TSUM1 | 1 | 0.5 | 1.5 |
α_TSUM2 | 1 | 0.5 | 1.5 |
α_TDWI | 1 | 0 | 5 |
α_SPAN | 1 | 0.8 | 2.0 |
α_SLATB | 1 | 0.8 | 1.2 |
α_AMAXTB | 1 | 0.8 | 1.2 |
α_v | 1 | 0.8 | 1.2 |
β_DVS | 0 | −0.2 | 0.2 |
LAI | Yield |
---|---|
Yield1 | |
Yield2 | |
Yieldm−1 | |
Yieldm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xu, W.; Huang, H.; Huang, J. Bayesian Posterior-Based Winter Wheat Yield Estimation at the Field Scale through Assimilation of Sentinel-2 Data into WOFOST Model. Remote Sens. 2022, 14, 3727. https://doi.org/10.3390/rs14153727
Wu Y, Xu W, Huang H, Huang J. Bayesian Posterior-Based Winter Wheat Yield Estimation at the Field Scale through Assimilation of Sentinel-2 Data into WOFOST Model. Remote Sensing. 2022; 14(15):3727. https://doi.org/10.3390/rs14153727
Chicago/Turabian StyleWu, Yantong, Wenbo Xu, Hai Huang, and Jianxi Huang. 2022. "Bayesian Posterior-Based Winter Wheat Yield Estimation at the Field Scale through Assimilation of Sentinel-2 Data into WOFOST Model" Remote Sensing 14, no. 15: 3727. https://doi.org/10.3390/rs14153727