Spatio-Temporal Heterogeneous Impacts of the Drivers of NO2 Pollution in Chinese Cities: Based on Satellite Observation Data
<p>Schematic diagram of the spatio-temporal distance of the GTWR model.</p> "> Figure 2
<p>The annual mean of NO<sub>2</sub> VCDs and yearly changes of NO<sub>2</sub> VCDs from 2005 to 2020. (Unit: ×10<sup>13</sup> molecule/cm<sup>2</sup>).</p> "> Figure 3
<p>Percentage changes of NO<sub>2</sub>, between 2005 and 2019 (<b>a</b>), between 2005 and 2020 (<b>b</b>), and during the COVID-19 pandemic (<b>c</b>).</p> "> Figure 3 Cont.
<p>Percentage changes of NO<sub>2</sub>, between 2005 and 2019 (<b>a</b>), between 2005 and 2020 (<b>b</b>), and during the COVID-19 pandemic (<b>c</b>).</p> "> Figure 4
<p>Global Moran’s <span class="html-italic">I</span> values of NO<sub>2</sub> from 2005 to 2020.</p> "> Figure 5
<p>LISA cluster maps of annual mean NO<sub>2</sub> in 2005, 2010, 2015, and 2020.</p> "> Figure 6
<p>Spatio-temporal variations of the coefficients of socio-economic factors during 2005–2019 (from <b>bottom</b> to <b>top</b>).</p> "> Figure 7
<p>Spatio-temporal variations of the coefficients of metrological factors during 2005–2019 (from <b>bottom</b> to <b>top</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Methodology
3. Results and Discussions
3.1. Analysis of Spatio-Temporal Variation of NO2 Pollution
3.2. Regression Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richter, A.; Burrows, J.P.; Nusz, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.J.; Martin, R.V.; Hammer, M.S.; Levelt, P.F.; Veefkind, P.; Lamsal, L.N.; Krotkov, N.A.; Brook, J.R.; McLinden, C.A. Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature 2022, 601, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, W.; Bao, H.; Wang, C.; Cai, W.; Yu, J.; Streets, D.G. Spatiotemporal dynamics of nitrogen dioxide pollution and urban development: Satellite observations over China, 2005–2016. Resour. Conserv. Recycl. 2019, 142, 59–68. [Google Scholar] [CrossRef]
- Huang, S.; Li, H.; Wang, M.; Qian, Y.; Steenland, K.; Caudle, W.M.; Liu, Y.; Sarnat, J.; Papatheodorou, S.; Shi, L. Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Sci. Total Environ. 2021, 776, 145968. [Google Scholar] [CrossRef]
- Zhang, Q.; Geng, G.; Wang, S.; Richter, A.; He, K.B. Satellite remote sensing of changes in NOx emissions over China during 1996–2010. Chin. Sci. Bull. 2012, 57, 2857–2864. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015.
- Persello, C.; Wegner, J.D.; Hansch, R.; Tuia, D.; Ghamisi, P.; Koeva, M.; Camps-Valls, G. Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current Approaches, Open Challenges, and Future Opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 172–200. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Zhang, J.; Hou, Z.; Li, J. Unravelling the complexity in achieving the 17 sustainable-development goals. Natl. Sci. Rev. 2019, 6, 386–388. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Canty, T.; Carmichael, G.R.; de Foy, B.; Dickerson, R.R.; Duncan, B.N.; Edwards, D.P.; Haynes, J.A.; Henze, D.K.; Houyoux, M.R.; et al. Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ. 2013, 77, 1011–1042. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lee, C.S.; Zhang, R.; Chen, L. Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmos. Environ. 2017, 154, 151–166. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, L.; Zhang, W.; Bao, H.; Geng, B.; He, Q.; Zhang, L.; Streets, D.G. Evaluation of China’s Environmental Pressures Based on Satellite NO2 Observation and the Extended STIRPAT Model. Int. J. Environ. Res. Public Health 2019, 16, 1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, I.; Erbertseder, T.; Taubenböck, H. Tropospheric NO2: Explorative analyses of spatial variability and impact factors. Remote Sens. Environ. 2022, 270, 112839. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, P. The Spatial–Temporal Variation of Tropospheric NO2 over China during 2005 to 2018. Atmosphere 2019, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhou, C.; Lee, X.; Bao, Y.; Zhao, X.; Fung, J.; Richter, A.; Liu, X.; Zheng, Y. The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over East China. Atmos. Environ. 2013, 77, 558–567. [Google Scholar] [CrossRef]
- Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, P.K.; Boersma, K.F.; Veefkind, J.P.; Gleason, J.F.; Pickering, K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607–2626. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.T.; McElroy, M.B. Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese economic downturn. Atmos. Chem. Phys. 2011, 11, 8171–8188. [Google Scholar] [CrossRef] [Green Version]
- Bichler, R.; Bittner, M. Comparison between economic growth and satellite-based measurements of NO2 pollution over northern Italy. Atmos. Environ. 2022, 272, 118948. [Google Scholar] [CrossRef]
- Mijling, B.; van der, A.R.J.; Boersma, K.F.; Van Roozendael, M.; De Smedt, I.; Kelder, H.M. Reductions of NO2 detected from space during the 2008 Beijing Olympic Games. Geophys. Res. Lett. 2009, 36, L13801. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, H. Effect of emission control measures on ozone concentrations in Hangzhou during G20 meeting in 2016. Chemosphere 2020, 261, 127729. [Google Scholar] [CrossRef]
- Feng, S.; Jiang, F.; Wang, H.; Wang, H.; Ju, W.; Shen, Y.; Zheng, Y.; Wu, Z.; Ding, A. NOx Emission Changes Over China During the COVID-19 Epidemic Inferred from Surface NO2 Observations. Geophys. Res. Lett. 2020, 47, e2020GL090080. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Han, L. The short-term impact of the COVID-19 epidemic on socioeconomic activities in China based on the OMI-NO2 data. Environ. Sci. Pollut. Res. 2022, 29, 21682–21691. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Xu, H.; Zhang, Z.; Zheng, S.; Liu, H. Year-round changes in tropospheric nitrogen dioxide caused by COVID-19 in China using satellite observation. J. Environ. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Liu, Q.; Malarvizhi, A.S.; Liu, W.; Xu, H.; Harris, J.T.; Yang, J.; Duffy, D.Q.; Little, M.M.; Sha, D.; Lan, H.; et al. Spatiotemporal changes in global nitrogen dioxide emission due to COVID-19 mitigation policies. Sci. Total Environ. 2021, 776, 146027. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Q.J.; van der, A.R.; Zheng, B.; Tong, D.; Yan, L.; Zheng, Y.; He, K. Recent reduction in NOx emissions over China: Synthesis of satellite observations and emission inventories. Environ. Res. Lett. 2016, 11, 114002. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Lin, J.; Song, C.; Liu, M.; Yan, Y.; Xu, Y.; Huang, B. Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013. Atmos. Chem. Phys. 2016, 16, 6207–6221. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Dong, F.; Li, J.; Zhang, S.; Wang, Y.; Sun, Z. Sensitivity analysis and spatial-temporal heterogeneity of CO2 emission intensity: Evidence from China. Resour. Conserv. Recycl. 2019, 150, 104398. [Google Scholar] [CrossRef]
- Li, T.; Shen, H.; Yuan, Q.; Zhang, L. Geographically and temporally weighted neural networks for satellite-based mapping of ground-level PM2.5. ISPRS J. Photogramm. Remote Sens. 2020, 167, 178–188. [Google Scholar] [CrossRef]
- Qin, K.; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, Z.; Chen, Y.; Fang, C. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resour. Conserv. Recycl. 2021, 168, 105477. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Dirksen, R.J.; van der, A.R.J.; Veefkind, J.P.; Stammes, P.; Huijnen, V.; Kleipool, Q.L.; Sneep, M.; Claas, J.; et al. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011, 4, 1905–1928. [Google Scholar] [CrossRef] [Green Version]
- Boersma, K.F.; Eskes, H.J.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van Geffen, J.H.G.M.; Zara, M.; Peters, E.; Van Roozendael, M.; et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: Results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 2018, 11, 6651–6678. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wu, B.; Li, R.; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices. Int. J. Geogr. Inf. Sci. 2014, 28, 1186–1204. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.; Qin, K.; Zhang, Y.; Shen, Y.; Zhou, Y. A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef] [Green Version]
Variable | S.D. | Mean | Median | Min | Max |
---|---|---|---|---|---|
LnNO2 | 0.796 | 6.197 | 6.149 | 4.097 | 8.111 |
LnFDI | 4.008 | 15.580 | 16.303 | 0.000 | 24.569 |
LnPD | 0.881 | 5.795 | 5.929 | 1.547 | 9.984 |
LnGDPPC | 0.855 | 10.295 | 10.269 | 6.638 | 13.185 |
LnTSRatio | 0.495 | 0.886 | 0.787 | 0.094 | 9.482 |
LnTemp | 0.138 | 2.823 | 2.808 | 2.301 | 3.256 |
LnWS | 0.231 | 0.725 | 0.741 | 0.085 | 1.563 |
LnPres | 2.974 | 5.320 | 6.887 | −0.925 | 6.924 |
LnHumi | 0.146 | −0.384 | −0.333 | −0.983 | −0.136 |
OLS | TWR | GWR | GTWR | |
---|---|---|---|---|
Bandwidth | 0.173 | 0.154 | 0.115 | |
RSS | 518.165 | 440.587 | 249.372 | 218.057 |
AICc | 3229.014 | 2692.45 | 570.299 | 170.898 |
R2 | 0.776 | 0.804 | 0.879 | 0.904 |
Adjusted R2 | 0.774 | 0.803 | 0.877 | 0.903 |
Spatio-temporal Distance Ratio | 0.373 |
Variable | Mean | Median | Min | Max |
---|---|---|---|---|
LnFDI | 0.021 | 0.022 | −0.022 | 0.072 |
LnPD | 0.611 | 0.620 | 0.211 | 0.920 |
LnGDPPC | 0.221 | 0.215 | −0.143 | 0.532 |
LnTSRatio | −0.222 | −0.220 | −0.410 | 0.150 |
LnTemp | −1.094 | −0.987 | −3.484 | 2.557 |
LnPres | 2.711 | 2.059 | −1.945 | 9.210 |
LnWS | −0.191 | −0.173 | −2.918 | 1.328 |
LnHumi | −2.100 | −2.387 | −4.564 | 2.606 |
Intercept | −14.246 | −10.576 | −37.875 | 7.972 |
Variable | Mean | Median | Min | Max |
---|---|---|---|---|
LnFDI | 0.066 | 0.069 | −0.070 | 0.228 |
LnPD | 0.609 | 0.611 | 0.229 | 0.998 |
LnGDPPC | 0.210 | 0.216 | −0.686 | 0.769 |
LnTSRatio | −0.141 | −0.139 | −0.260 | 0.097 |
LnTemp | −0.189 | −0.170 | −0.601 | 0.437 |
LnPres | 0.193 | 0.146 | −0.138 | 0.999 |
LnWS | −0.058 | −0.052 | −0.882 | 0.401 |
LnHumi | −0.375 | −0.426 | −0.814 | 0.465 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zha, H.; Dang, Y.; Qiu, L.; He, Q.; Jiang, L. Spatio-Temporal Heterogeneous Impacts of the Drivers of NO2 Pollution in Chinese Cities: Based on Satellite Observation Data. Remote Sens. 2022, 14, 3487. https://doi.org/10.3390/rs14143487
Cui Y, Zha H, Dang Y, Qiu L, He Q, Jiang L. Spatio-Temporal Heterogeneous Impacts of the Drivers of NO2 Pollution in Chinese Cities: Based on Satellite Observation Data. Remote Sensing. 2022; 14(14):3487. https://doi.org/10.3390/rs14143487
Chicago/Turabian StyleCui, Yuanzheng, Hui Zha, Yunxiao Dang, Lefeng Qiu, Qingqing He, and Lei Jiang. 2022. "Spatio-Temporal Heterogeneous Impacts of the Drivers of NO2 Pollution in Chinese Cities: Based on Satellite Observation Data" Remote Sensing 14, no. 14: 3487. https://doi.org/10.3390/rs14143487
APA StyleCui, Y., Zha, H., Dang, Y., Qiu, L., He, Q., & Jiang, L. (2022). Spatio-Temporal Heterogeneous Impacts of the Drivers of NO2 Pollution in Chinese Cities: Based on Satellite Observation Data. Remote Sensing, 14(14), 3487. https://doi.org/10.3390/rs14143487