Study of Land Surface Changes in Highland Environments for the Sustainable Management of the Mountainous Region in Gilgit-Baltistan, Pakistan
<p>Study area map: (<b>a</b>) Pakistan’s map; (<b>b</b>) map of the Gilgit-Baltistan (GB) Province of Pakistan; (<b>c</b>) study area location, with a 10 km buffer along the CPEC route in three districts (Gilgit, Hunza, and Nagar) of Gilgit-Baltistan, Pakistan.</p> "> Figure 2
<p>Distribution of minimum, mean, and maximum NDVIs from 2008 to 2023.</p> "> Figure 3
<p>Spatial pattern of NDVI change due to build-up in the study area from 2008 to 2023.</p> "> Figure 3 Cont.
<p>Spatial pattern of NDVI change due to build-up in the study area from 2008 to 2023.</p> "> Figure 4
<p>Spatial pattern of NDVI change due to water in the study area from 2008 to 2023.</p> "> Figure 4 Cont.
<p>Spatial pattern of NDVI change due to water in the study area from 2008 to 2023.</p> "> Figure 5
<p>Distribution of NDWI from 2008 to 2023, with four-year intervals.</p> "> Figure 6
<p>Spatial change in NDWI from 2008 to 2023 and significant at 0.01, 0.05 level.</p> "> Figure 7
<p>Spatial change in NDBI from 2008 to 2023 and significant at 0.01, 0.05 level.</p> "> Figure 8
<p>Distribution of NDBI from 2008 to 2023, with four-year intervals.</p> "> Figure 9
<p>The trend of the aridity index in the study area.</p> "> Figure 10
<p>Shows (<b>a</b>) population dynamics and (<b>b</b>) tourist flow in the study area.</p> "> Figure 11
<p>Temporal variation and linear trend along the CPEC route from 2008 to 2023; annual precipitation in (<b>a</b>) Gilgit and (<b>b</b>) Hunza-Nagar; annual temperature in (<b>c</b>) Gilgit and (<b>d</b>) Hunza-Nagar.</p> "> Figure 11 Cont.
<p>Temporal variation and linear trend along the CPEC route from 2008 to 2023; annual precipitation in (<b>a</b>) Gilgit and (<b>b</b>) Hunza-Nagar; annual temperature in (<b>c</b>) Gilgit and (<b>d</b>) Hunza-Nagar.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Collection
2.1. Study Area
2.2. Data Collection
3. Methodology
3.1. Pre-Processing of Data
3.2. Normalized Difference Vegetation Index (NDVI)
3.3. Normalized Difference Water Index (NDWI)
3.4. Normalized Difference Built-Up Index (NDBI)
3.5. Aridity Index (AI)
3.6. Mann–Kendall (M-K) Test
4. Results
4.1. NDVI Distribution from 2008 to 2023 and Change Detection
4.2. NDWI Change Detection from 2008 to 2023
4.3. NDBI Change Detection from 2008 to 2023
4.4. Aridity Index Analysis
5. Discussion
5.1. Impact of Human Activities on the NDVI, NDBI, and NDWI
5.2. Impact of Climate Change on the NDVI, NDBI, and NDWI
5.3. Suggestions
5.4. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fagre, D.B. Introduction: Understanding the importance of alpine treeline ecotones in mountain ecosystems. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2009; Volume 12, pp. 1–9. [Google Scholar]
- Asam, S.; Callegari, M.; Matiu, M.; Fiore, G.; De Gregorio, L.; Jacob, A.; Menzel, A.; Zebisch, M.; Notarnicola, C. Relationship between Spatiotemporal Variations of Climate, Snow Cover and Plant Phenology over the Alps—An Earth Observation-Based Analysis. Remote Sens. 2018, 10, 1757. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.Q.; Shangguan, D.; Li, D.; Khan, A.A.; Tan, Y.; Muhammad; Mukhtar, A.; Muhammad, A.; Afzal, M.; Butt, F.K.; et al. Gradual Changes in Snow Peaks in Upper Indus Basin, Pakistan: A Google Earth Based Review. J. Mt. Area Res. 2023, 7, 37–43. [Google Scholar] [CrossRef]
- Chersich, S.; Rejšek, K.; Vranová, V.; Bordoni, M.; Meisina, C. Climate change impacts on the Alpine ecosystem: An overview with focus on the soil. J. For. Sci. 2015, 61, 496–514. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Wang, Z.; Li, S.; Zhang, H.; Zu, J.; Ding, M.; Paudel, B. Spatiotemporal Patterns of Vegetation Greenness Change and Associated Climatic and Anthropogenic Drivers on the Tibetan Plateau during 2000–2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Afzal, M.; Liu, T.; Butt, A.Q.; Nadeem, A.A.; Ali, S.; Pan, X. Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan. Remote Sens. 2023, 15, 3988. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Hu, G.; Wang, J.; Sang, G.; Li, J. Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Banerjee, A.; Ariz, D.; Turyasingura, B.; Pathak, S.; Sajjad, W.; Yadav, N.; Kirsten, K.L. Long-term climate change and anthropogenic activities together with regional water resources and agricultural productivity in Uganda using Google Earth Engine. Phys. Chem. Earth 2024, 134, 103545. [Google Scholar] [CrossRef]
- Pastorino, P.; Elia, A.C.; Pizzul, E.; Bertoli, M.; Renzi, M.; Prearo, M. The old and the new on threats to high-mountain lakes in the Alps: A comprehensive examination with future research directions. Ecol. Indic. 2024, 160, 111812. [Google Scholar] [CrossRef]
- Wu, H.; Guo, B.; Fan, J.; Yang, F.; Han, B.; Wei, C.; Lu, Y.; Zang, W.; Zhen, X.; Meng, C. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Zhang, F.; Zeng, B.; Yang, T.; Zheng, Y.; Cao, Y. A Multi-Perspective Assessment Method with a Dynamic Benchmark for Human Activity Impacts on Alpine Ecosystem Under Climate Change. Remote Sens. 2022, 14, 208. [Google Scholar] [CrossRef]
- Tao, J.; Xu, T.; Dong, J.; Yu, X.; Jiang, Y.; Zhang, Y.; Huang, K.; Zhu, J.; Dong, J.; Xu, Y.; et al. Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982–2013. Int. J. Climatol. 2018, 38, 2029–2038. [Google Scholar] [CrossRef]
- Yang, H.; Gou, X.; Xue, B.; Ma, W.; Kuang, W.; Tu, Z.; Gao, L.; Yin, D.; Zhang, J. Research on the change of alpine ecosystem service value and its sustainable development path. Ecol. Indic. 2023, 146, 109893. [Google Scholar] [CrossRef]
- Javeed, B.; Huang, D.; Shangguan, D.; Banerjee, A.; Yang, Q.; Butt, A.Q. Assessing the effectiveness of national park’ s policies and laws in promoting biodiversity conservation and ecological development in Pakistan. Front. Environ. Sci. 2024, 11, 1333650. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Ding, Y.; Banerjee, A.; Sajjad, W.; Mukhtar, M.A. Assessing the existing guidelines of environmental impact assessment and mitigation measures for future hydropower projects in Pakistan. Front. Environ. Sci. 2024, 11, 1342953. [Google Scholar] [CrossRef]
- Butt, F.K.; Shangguan, D.; Butt, A.Q.; Arshad, M.T.; Raja, B.N.K.; Khitab, A.; Ding, Y.; Li, D.; Mukhtar, M.A. An Experimental Study to Mitigate Environmental Impacts by Transforming Waste Plastic Bags into Paving Blocks and Roof Tiles. Sustainability 2023, 15, 15801. [Google Scholar] [CrossRef]
- Munir, R.; Khayyam, U. Ecological corridors? The case of China-Pakistan economic corridor. Geoforum 2020, 117, 281–284. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Ding, Y.; Banerjee, A.; Mukhtar, M.A.; Taj, K. Evaluation of environmental impact assessment and mitigation strategies for Gulpur hydropower project, Kotli, Pakistan. Discov. Appl. Sci. 2024, 6, 137. [Google Scholar] [CrossRef]
- Sattar, A.; Hussain, M.N.; Ilyas, M. An Impact Evaluation of Belt and Road Initiative (BRI) on Environmental Degradation. SAGE Open 2022, 12, 215824402210788. [Google Scholar] [CrossRef]
- Jezierska-Thöle, A.; Gwiaździńska-Goraj, M.; Dudzińska, M. Environmental, Social, and Economic Aspects of the Green Economy in Polish Rural Areas—A Spatial Analysis. Energies 2022, 15, 3332. [Google Scholar] [CrossRef]
- Haider, S.; Masood, M.U.; Rashid, M.; Alshehri, F.; Pande, C.B.; Katipoğlu, O.M.; Costache, R. Simulation of the Potential Impacts of Projected Climate and Land Use Change on Runoff under CMIP6 Scenarios. Water 2023, 15, 3421. [Google Scholar] [CrossRef]
- Ali, T.Z. Impacts of the China-Pakistan Economic Corridor on the Natural Environment of Pakistan. Pak. Soc. Sci. Rev. 2023, 7, 653–663. [Google Scholar] [CrossRef]
- Waheed, A.; Kousar, S.; Khan, M.I.; Fischer, T.B. Environmental governance in Pakistan: Perspectives and implications for the China-Pakistan economic corridor plan. Environ. Sustain. Indic. 2024, 23, 100443. [Google Scholar] [CrossRef]
- Ruwanpura, K.N.; Rowe, P.; Chan, L. Of bombs and belts: Exploring potential ruptures within China’s Belt and Road Initiative in Sri Lanka. Geogr. J. 2020, 186, 339–345. [Google Scholar] [CrossRef]
- Wolf, S.O. China-Pakistan Economic Corridor (CPEC) and Its Impact on Gilgit-Baltistan; WP. No. 25; South Asia Democratic Forum: Brussels, Belgium, 2016; pp. 1–21. Available online: www.sadf.eu (accessed on 20 June 2024).
- Jaspal, D.Z.N. CPEC: Regional impact, Scientific, Pakistan Observer. Pakistan Observer, 16 March 2017. [Google Scholar]
- Haeberli, W.H.R. Climate, glaciers and permafrost in the Swiss Alps 2050: Scenarios, consequences and recommendations. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, AK, USA, 28 June–3 July 2008. [Google Scholar]
- Ashraf, A.; Naz, R.; Iqbal, M.B. Altitudinal dynamics of glacial lakes under changing climate in the Hindu Kush, Karakoram, and Himalaya ranges. Geomorphology 2017, 283, 72–79. [Google Scholar] [CrossRef]
- Saqib, Z.; Saeed, R.; Qasim, M.; Saqib, A.; Hassan, M. Environmental Impact Assessment (EIA) of CPEC road project by following EIA index approach for sustainability. Eur. J. Sustain. Dev. Res. 2023, 7, em0220. [Google Scholar] [CrossRef]
- Brisco, B.; Schmitt, A.; Murnaghan, K.; Kaya, S.; Roth, A. SAR polarimetric change detection for flooded vegetation. Int. J. Digit. Earth 2013, 6, 103–114. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40 years. Remote Sens. Environ. 2012, 127, 210–222. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [Google Scholar] [CrossRef]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- Banerjee, A.; Kang, S.; Meadows, M.E.; Xia, Z.; Sengupta, D.; Kumar, V. Quantifying climate variability and regional anthropogenic influence on vegetation dynamics in northwest India. Environ. Res. 2023, 234, 116541. [Google Scholar] [CrossRef] [PubMed]
- Bijeesh, T.V.; Narasimhamurthy, K.N. A Comparative Study of Spectral Indices for Surface Water Delineation Using Landsat 8 Images. In Proceedings of the 2019 International Conference on Data Science and Communication (IconDSC), Bangalore, India, 1–2 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Polykretis, C.; Grillakis, M.; Alexakis, D. Exploring the Impact of Various Spectral Indices on Land Cover Change Detection Using Change Vector Analysis: A Case Study of Crete Island, Greece. Remote Sens. 2020, 12, 319. [Google Scholar] [CrossRef]
- Banerjee, A.; Chen, R.; Meadows, M.E.; Sengupta, D.; Pathak, S.; Xia, Z.; Mal, S. Tracking 21st century climate dynamics of the Third Pole: An analysis of topo-climate impacts on snow cover in the central Himalaya using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102490. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Object-based water body extraction model using Sentinel-2 satellite imagery. Eur. J. Remote Sens. 2017, 50, 137–143. [Google Scholar] [CrossRef]
- Nath, B. Quantitative Assessment of Forest Cover Change of a Part of Bandarban Hill Tracts Using NDVI Techniques. J. Geosci. Geomat. 2014, 2, 21–27. [Google Scholar]
- Alphan, H.; Derse, M.A. Change detection in Southern Turkey using normalized difference vegetation index (NDVI). J. Environ. Eng. Landsc. Manag. 2013, 21, 12–18. [Google Scholar] [CrossRef]
- Liu, Y.; Shaker ul din; Jiang, Y. Urban growth sustainability of Islamabad, Pakistan, over the last 3 decades: A perspective based on object-based backdating change detection. GeoJournal 2021, 86, 2035–2055. [Google Scholar] [CrossRef]
- Pattanayak, S.P.; Diwakar, S.K. Seasonal Comparative Study of NDVI, NDBI and NDWI of Hyderabad City (Telangana) Based on LISS-III Image Using Remote Sensing and DIP. Khoj Int. Peer Rev. J. Geogr. 2018, 5, 78. [Google Scholar] [CrossRef]
- Deoli, V.; Kumar, D.; Kuriqi, A. Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data. Sensors 2022, 22, 6827. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qiu, J.; Li, F. A Remote Sensing Water Information Extraction Method Based on Unsupervised Form Using Probability Function to Describe the Frequency Histogram of NDWI: A Case Study of Qinghai Lake in China. Water 2024, 16, 1755. [Google Scholar] [CrossRef]
- Jabrayilov, E.A. Monitoring of Fragile Ecosystems with Spectral Indices Using Sentinel-2A MSI Data in Shahdagh National Park. Geogr. Environ. Sustain. 2022, 15, 70–77. [Google Scholar] [CrossRef]
- Abdenour, A.; Sinan, M.; Lekhlif, B.; Belloulid, O. A GIS based approach for assessing water body change in a mountain wetland: Case of Dayet Awwa, Morocco. E3S Web Conf. 2024, 489, 04001. [Google Scholar] [CrossRef]
- Thapa, R.; Bahuguna, D.V.; Negi, P.; Rana, P.S.; Kataria, P.; Rawat, D.G.; Yasir, M.; Sharma, T. Examining the spatio-temporal relationship between LST, NDVI, NDBI and LULC change of Pachhua dun, Dehradun, Uttarakhand (India). JGISE J. Geospat. Inf. Sci. Eng. 2023, 6, 136. [Google Scholar] [CrossRef]
- Zhao, Q.; Haseeb, M.; Wang, X.; Zheng, X.; Tahir, Z.; Ghafoor, S.; Mubbin, M.; Kumar, R.P.; Purohit, S.; Soufan, W.; et al. Evaluation of Land Use Land Cover Changes in Response to Land Surface Temperature with Satellite Indices and Remote Sensing Data. Rangel. Ecol. Manag. 2024, 96, 183–196. [Google Scholar] [CrossRef]
- Arif, N.; Toersilowati, L. Monitoring and predicting development of built-up area in sub-urban areas: A case study of Sleman, Yogyakarta, Indonesia. Heliyon 2024, 10, e34466. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Yi, C.; Xu, X.; Li, Y. Glacier status during the period 1973–2014 in the Hunza Basin, Western Karakoram. Quat. Int. 2017, 444, 125–136. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Pellicciotti, F.; Shrestha, A.B. Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt. Res. Dev. 2012, 32, 30–38. [Google Scholar] [CrossRef]
- Hussain, D.; Kuo, C.Y.; Hameed, A.; Tseng, K.H.; Jan, B.; Abbas, N.; Kao, H.C.; Lan, W.H.; Imani, M. Spaceborne satellite for snow cover and hydrological characteristic of the Gilgit river basin, Hindukush–Karakoram mountains, Pakistan. Sensors 2019, 19, 531. [Google Scholar] [CrossRef] [PubMed]
- Spies, M. Mixed manifestations of climate change in high mountains: Insights from a farming community in northern Pakistan. Clim. Dev. 2020, 12, 911–922. [Google Scholar] [CrossRef]
- Alam, J.; Abbas, Z.; Kousar, S.; Jan, G.; Karim, S.; Muhammad, S.; Islam, M.; Harun, N.; Yawer, A.; Abideen, Z. Plants of the Hunza Valley (Central Karakorum), Northern Pakistan: Ecology, Diversity, and Conservation. Pak. J. Bot. 2023, 55, 2311–2325. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Meng, G.; Ali, Y.; Muttahir, H.; Muhammad, M. Impact of China Pakistan Economic Corridor (CPEC) on Fruit Industry in. N. Am. Acad. Res. 2019, 2, 177–190. [Google Scholar]
- Ali, R.; Khan, B.; Ali, A.; Khan, M.Z.; Abbas, S.; Hussain, E.; Ali, M. Baseline study of vegetation in Doyan Valley District Astore, Gilgit-Baltistan, Pakistan. Int. J. Emerg. Trends Sci. Technol. 2014, 1, 452–462. [Google Scholar]
- Kiranmai, A.V.; Aparna, N.; Sree, B.J.; Kalyan, D.P.; Suresh, K.; Red, N.I.R.; Red, N.I.R. Normalized Difference Vegetation Index (NDVI) b ased Land Cover Classification using ArcGIS. Int. Res. J. Eng. Technol. 2020, 7, 2895–2900. [Google Scholar]
- Chen, L.; Li, M.; Huang, F.; Xu, S. Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. In Proceedings of the 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Volume 2, pp. 840–845. [Google Scholar] [CrossRef]
- Ali Shah, S.; Ali Siyal, A. GIS Based Approach Estimation of Area Under Wheat and Other Major Rabi Crops in District Ghotki and Corresponding Irrigation Water Requirement. Acta Sci. Agric. 2019, 3, 59–70. [Google Scholar] [CrossRef]
- ALI SHAH, S.; KİRAN, M. A GIS-based technique analysis of land use and land cover change detection in taluka Mirpur Mathelo: A case study in district Ghotki, Pakistan. Int. Adv. Res. Eng. J. 2021, 5, 231–239. [Google Scholar] [CrossRef]
- Refat Faisal, B.M.; Rahman, H.; Sharifee, N.H.; Sultana, N.; Islam, M.I.; Ahsan Habib, S.M.; Ahammad, T. Integrated Application of Remote Sensing and GIS in Crop Information System—A Case Study on Aman Rice Production Forecasting Using MODIS-NDVI in Bangladesh. AgriEngineering 2020, 2, 264–279. [Google Scholar] [CrossRef]
- Sonawane, K.; Bhagat, V. Improved Change Detection of Forests Using Landsat TM and ETM data. Remote Sens. Land 2016, 1, 18–40. [Google Scholar] [CrossRef]
- Malik, M.S.; Shukla, J.P.; Mishra, S. Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian J. Geo-Mar. Sci. 2019, 48, 25–31. [Google Scholar]
- Shah, S.A.; Kiran, M.; Khurshid, T. Seepage Losses Measurement of Desert Minor and Development of Gauge-Discharge Rating Curve: A case study in District Ghotki, Sindh. World Acad. J. Eng. Sci. 2021, 8, 13–22. [Google Scholar]
- Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using Landsat 8 OLI imagery. GISci. Remote Sens. 2014, 51, 445–467. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Brumbaugh, F. What is an I.Q.? J. Exp. Educ. 1955, 23, 359–363. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Hussain, F.; Hussain, M. China-Pak Economic Corridor (CPEC) and Its Geopolitical Paradigms. IJSSHE-Int. J. Soc. Sci. Humanit. Educ. 2017, 1, 1–17. [Google Scholar]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Middleton, N.J.; Thomas, D.S.G. (Eds.) World Atlas of Desertification; Edward Arnold: London, UK, 1992. [Google Scholar]
- Stefanidis, K.; Kostara, A.; Papastergiadou, E. Implications of Human Activities, Land Use Changes and Climate Variability in Mediterranean Lakes of Greece. Water 2016, 8, 483. [Google Scholar] [CrossRef]
- Nastos, P.T.; Politi, N.; Kapsomenakis, J. Spatial and temporal variability of the Aridity Index in Greece. Atmos. Res. 2013, 119, 140–152. [Google Scholar] [CrossRef]
- Zarei, A.R.; Mahmoudi, M.R. Assessing the Influence of PET Calculation Method on the Characteristics of UNEP Aridity Index Under Different Climatic Conditions throughout Iran. Pure Appl. Geophys. 2021, 178, 3179–3205. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydrol. 2020, 584, 124674. [Google Scholar] [CrossRef]
- Ran, Q.; Hao, Y.; Xia, A.; Liu, W.; Hu, R.; Cui, X.; Xue, K.; Song, X.; Xu, C.; Ding, B.; et al. Quantitative Assessment of the Impact of Physical and Anthropogenic Factors on Vegetation Spatial-Temporal Variation in Northern Tibet. Remote Sens. 2019, 11, 1183. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Hamed, K.H. Exact distribution of the Mann–Kendall trend test statistic for persistent data. J. Hydrol. 2009, 365, 86–94. [Google Scholar] [CrossRef]
- Ali, N.; Majeed, A.; Saeed, S.; Zulfiqar, N.; Ashraf, M.J. Climate Change in Pakistan and its Resilience Efforts. Al Qantara 2023, 9, 514–528. [Google Scholar]
- Liu, Y.; Tian, J.; Liu, R.; Ding, L. Influences of Climate Change and Human Activities on NDVI Changes in China. Remote Sens. 2021, 13, 4326. [Google Scholar] [CrossRef]
- Tariq, S.; Mahmood, A.; Rasul, G. Temperature and Precipitation: GLOF Triggering Indicators in Gilgit-Baltistan, Pakistan. Pak. J. Meteorol. 2014, 10, 39–56. [Google Scholar]
- Abbas, N.; Afsar, S.; Jan, B.; Waseem, L.A.; Asad Naqvi, S.A.; Hameed, A.; Karim, S.; Hussain, Z. Environmental disaster assessment using geospatial techniques for Hunza-Nagar district, Gilgit-Baltistan, Pakistan. Sci. Int. 2016, 28, 5319–5328. [Google Scholar]
- Shahid, M. Confronting Glacial Hazards: A Study of Disaster Impact and Community Adaptation to Glacial Lake Outburst Floods in Hunza, Pakistan. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2024. [Google Scholar]
- Baig, S.S.; Khan, G.; Alam, M. Geological Hazards Along the CPEC Route from Gilgit to Khunjerab; The China Study Center, Kaeakoram International Univrsity: Gilgit, Pakistan, 2023; ISBN 9789692390002. [Google Scholar]
- Song, W.; Wang, Y.; Xue, B. Landsat Satellite Image-Derived Area Evolution and the Driving Factors Affecting Hulun Lake from 1986 to 2020. Remote Sens. 2023, 15, 2682. [Google Scholar] [CrossRef]
- Șerban, C.; Maftei, C.; Dobrică, G. Surface Water Change Detection via Water Indices and Predictive Modeling Using Remote Sensing Imagery: A Case Study of Nuntasi-Tuzla Lake, Romania. Water 2022, 14, 556. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef]
- Ogashawara, I.; Bastos, V. A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover. Remote Sens. 2012, 4, 3596–3618. [Google Scholar] [CrossRef]
- Naburi, N.D.; Mugalavai, E.; Obiri, J. Determinants of Watershed Governance and Food Security Among Households’ in the Lower Sio River Watershed, Busia County, Kenya. Int. J. Agric. Environ. Biores. 2018, 3, 184–209. [Google Scholar]
- Banerjee, A.; Kang, S.; Guo, W.; Meadows, M.E.; Wang, W.; Sengupta, D.; Zhang, T. Glacier retreat and lake outburst floods in the central Himalayan region from 2000 to 2022. Nat. Hazards 2024, 120, 5485–5508. [Google Scholar] [CrossRef]
- Baig, S.; Khan, A.A.; Khan, A.A. A time series analysis of causality between tourist arrivals and climatic effects for nature-based tourism destinations: Evidence from Gilgit-Baltistan, Pakistan. Environ. Dev. Sustain. 2021, 23, 5035–5057. [Google Scholar] [CrossRef]
- Baig, S.; Khan, A.A.; Khan, A.A.; Bano, S. Rural Tourism, Income and Rapid Urbanization: Exploring the Nexus Using A MultiDisciplinary Approach for Hunza, Pakistan. Int. J. Econ. Environ. Geol. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Ali, M.; Sajjad, W.; Haleem, A. Climate engineering: A strategic approach to combat environmental potential risks associated with Pak-China Economic corridor (CPEC) Development. Rev. Environ. Health 2021, 36, 143–144. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y. Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia. Sci. Rep. 2021, 11, 17920. [Google Scholar] [CrossRef]
- Laghari, J.R. Climate change: Melting glaciers bring energy uncertainty. Nature 2013, 502, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Kang, S.; Wu, H.; Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 2018, 203, 141–163. [Google Scholar] [CrossRef]
- Shelton, S.; Dixon, R.D. Long-Term Seasonal Drought Trends in the China-Pakistan Economic Corridor. Climate 2023, 11, 45. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Duan, W.; Cao, M.; Qin, J. Spatiotemporal variation in irrigation water requirements in the China–Pakistan Economic Corridor. Sci. Rep. 2022, 12, 17258. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Khan, A.H.; Gao, S. Meteorological impacts on evapotranspiration in different climatic zones of Pakistan. J. Arid Land 2017, 9, 938–952. [Google Scholar] [CrossRef]
- Reynolds, C.; Stout, T.; Wang, X.; Weintha, E. Environmental and Economic Impacts of The Belt and Road Initiative on Pakistan’s Energy Sector. Master’s Thesis, The Nicholas School of the Environment of Duke University, Durham, NC, USA, 2018; p. 16. Available online: https://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/16605/MPCRTSXW.pdf?sequence=1&isAllowed=y (accessed on 11 September 2024).
- Khan, N.; Shahid, S.; Ismail, T.B.; Wang, X.-J. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Penas, A.; Cano-Ortiz, A.; Kersebaum, K.C.; Herrero, L.; del Río, S. Analysis of recent changes in maximum and minimum temperatures in Pakistan. Atmos. Res. 2016, 168, 234–249. [Google Scholar] [CrossRef]
- Qasim, M. Spatiotemporal Variations and Trends in Minimum and Maximum Temperatures of Pakistan. J. Appl. Environ. Biol. Sci. 2014, 4, 85–93. [Google Scholar]
- Nabi, G.; Ullah, S.; Khan, S.; Ahmad, S.; Kumar, S. China-Pakistan Economic Corridor (CPEC): Melting glaciers—A potential threat to ecosystem and biodiversity. Environ. Sci. Pollut. Res. 2018, 25, 3209–3210. [Google Scholar] [CrossRef]
Satellite | Acquired Date | Sensor | Path/Row | Resolution | Bands | Cloud Cover | Source |
---|---|---|---|---|---|---|---|
Landsat 5 | 11 October 2008 3 November 2008 27 July 2009 27 August 2009 30 May 2009 | TM | 149/34, 149/35 150/35 149/34 149/35 150/35 | 30 m | 1,2,3,4,5,7 | <5% | USGS |
Landsat 7 | 25 October 2010 16 October 2010 12 October 2011 3 October 2011 30 October 2012 1 July 2012 | ETM+ | 149/34 150/35 149/34 150/35 149/35 150/35 | 30 m | 1,2,3,4,5,7 | <5% | USGS |
Landsat 8 | 9 October 2013 28 July 2013 26 October 2014 3 October 2014 31 October 2015 19 August 2015 17 October 2016 20 July 2016 1 August 2017 9 September 2017 4 August 2018 30 April 2018 15 January 2018 24 September 2019 13 July 2019 25 August 2020 16 August 2020 24 July 2020 4 September 2021 29 September 2021 15 October 2021 | OLI/TIRS | 149/34, 149/35 150/35 149/34, 149/35 150/35 149/34, 149/35 150/35 149/34, 149/35 150/35 149/34, 149/35 150/35 149/35 149/34 150/35 149/34, 149/35 150/35 149/34 150/35 149/35 150/35 149/34 149/35 | 30 m | 1,2,3,4,5,6,7,9 | <5% | USGS |
Landsat 9 | 9 October 2022 8 September 2022 9 August 2023 10 August 2023 | OLI/TIRS | 150/35 149/34, 149/35 150/35 149/34, 149/35 | 30 m | 1,2,3,4,5,6,7,9 | <5% | USGS |
Years | Gilgit (Met Station) | Hunza (Met Station) | ||||
---|---|---|---|---|---|---|
PET | Annual P | AI | PET | Annual P | AI | |
2008 | 859.039 | 227.7 | 0.2651 | 695.120 | 883.3 | 1.270 |
2009 | 875.114 | 150.1 | 0.1715 | 692.513 | 434.3 | 0.627 |
2010 | 864.919 | 155.3 | 0.1796 | 633.270 | 158.8 | 0.251 |
2011 | 899.940 | 132.6 | 0.1473 | 638.878 | 238.8 | 0.374 |
2012 | 900.551 | 85.9 | 0.0954 | 669.753 | 202.9 | 0.301 |
2013 | 937.374 | 187.3 | 0.1998 | 650.041 | 153.3 | 0.236 |
2014 | 867.539 | 145.6 | 0.1678 | 694.539 | 138.1 | 0.199 |
2015 | 847.236 | 270.8 | 0.3196 | 676.368 | 180.3 | 0.267 |
2016 | 916.480 | 158.7 | 0.1732 | 692.552 | 167.4 | 0.242 |
2017 | 868.830 | 151.2 | 0.1740 | 721.020 | 163.8 | 0.227 |
2018 | 931.879 | 154.5 | 0.1658 | 711.559 | 122.4 | 0.172 |
2019 | 876.992 | 122.4 | 0.1396 | 714.034 | 109.8 | 0.154 |
2020 | 876.597 | 153.4 | 0.1750 | 670.712 | 492.1 | 0.734 |
2021 | 891.157 | 169.5 | 0.1902 | 650.596 | 198.3 | 0.305 |
2022 | 885.896 | 128.2 | 0.1447 | 680.725 | 190.0 | 0.279 |
2023 | 898.065 | 150.7 | 0.1678 | 678.664 | 147.8 | 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.A.; Xue, X.; Hussain, H.; Hussain, K.; Muhammad, A.; Mukhtar, M.A.; Butt, A.Q. Study of Land Surface Changes in Highland Environments for the Sustainable Management of the Mountainous Region in Gilgit-Baltistan, Pakistan. Sustainability 2024, 16, 10311. https://doi.org/10.3390/su162310311
Khan AA, Xue X, Hussain H, Hussain K, Muhammad A, Mukhtar MA, Butt AQ. Study of Land Surface Changes in Highland Environments for the Sustainable Management of the Mountainous Region in Gilgit-Baltistan, Pakistan. Sustainability. 2024; 16(23):10311. https://doi.org/10.3390/su162310311
Chicago/Turabian StyleKhan, Amjad Ali, Xian Xue, Hassam Hussain, Kiramat Hussain, Ali Muhammad, Muhammad Ahsan Mukhtar, and Asim Qayyum Butt. 2024. "Study of Land Surface Changes in Highland Environments for the Sustainable Management of the Mountainous Region in Gilgit-Baltistan, Pakistan" Sustainability 16, no. 23: 10311. https://doi.org/10.3390/su162310311
APA StyleKhan, A. A., Xue, X., Hussain, H., Hussain, K., Muhammad, A., Mukhtar, M. A., & Butt, A. Q. (2024). Study of Land Surface Changes in Highland Environments for the Sustainable Management of the Mountainous Region in Gilgit-Baltistan, Pakistan. Sustainability, 16(23), 10311. https://doi.org/10.3390/su162310311