Priority Conservation Area of Quercus mongolica Under Climate Change: Application of an Ensemble Modeling
<p>Distribution sampling sites of <span class="html-italic">Q. mongolica</span> in China.</p> "> Figure 2
<p>Box diagram of accuracy evaluation results of different models. Note: GBM: Generalized Boosted Model; GLM: Generalized Linear Model; CTA: Classification Tree Analysis; MaxEnt: Maximum Entropy Model; SRE: Surface Range Envelope; RF: Random Forest; FDA: Flexible Discriminant Analysis; ANN: Artificial Neural Network; ENSEMBLE: composite pattern.</p> "> Figure 3
<p>Response curves of major environment factors participating in modeling. Note: (<b>a</b>) response curve of the minimum temperature in the coldest month. (<b>b</b>) Response curve of the altitude. (<b>c</b>) Response curve of the maximum temperature in the warmest month.</p> "> Figure 4
<p>Distribution of suitable area of <span class="html-italic">Q. mongolica</span> in northeast China.</p> "> Figure 5
<p>Changes of potential distribution and total distribution patterns of suitable areas of <span class="html-italic">Q. mongolica</span> in different periods. ((<b>a</b>–<b>f</b>) indicate the distribution of suitable areas in different periods; (<b>g</b>–<b>l</b>) indicate the changes of suitable areas in different periods).</p> "> Figure 6
<p>Future <span class="html-italic">Q. Mongolica</span> niche under the ssp126 (<b>a</b>,<b>b</b>), ssp245 (<b>c</b>,<b>d</b>), ssp585 (<b>e</b>,<b>f</b>) scenarios in the 2050s (<b>a</b>,<b>c</b>,<b>e</b>) and 2090s (<b>b</b>,<b>d</b>,<b>f</b>). Note: PC1 and PC2 represent the first two axes of principal component analysis (PCA). The green and red shadings represent density of species occurrences in current and future scenario, and blue means overlap. The solid and dashed contour lines illustrate 100% and 50% of the available environmental space, respectively. Red arrows mark how the climatic niche (solid line) of <span class="html-italic">Q. mongolica</span> and the center of the background range (dashed line) move between the two ranges.</p> "> Figure A1
<p>The importance of environmental variables based on the jackknife method.</p> "> Figure A2
<p>Importance of participating in modeling environmental factors.</p> "> Figure A3
<p>The niche overlap of <span class="html-italic">Q. mongolica</span> under different climate scenarios in the future.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Screening of Distribution Data
2.3. Acquisition and Processing of Environment Variables
2.4. Model Building and Testing
2.5. Niche Change Analysis
2.6. Data Analysis and Processing
3. Results
3.1. Model Accuracy Evaluation
3.2. Environmental Factor Analysis
3.3. The Current Geographical Distribution of Q. mongolica in China
3.4. Prediction of the Suitable Area of Q. mongolica in the Future
3.5. Analysis of the Ecological Niche Change of Q. mongolica in the Future Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Environmental Type | Code | Environmental Variabl | Environmental Type | Code | Environmental Variabl |
---|---|---|---|---|---|
Topsoil Variables | T-GRAVE | Topsoil Gravel Content (%vol) | Bioclimatic Variables | Bio1 | Annual Mean Temperature (°C) |
T-OC | Topsoil Organic Carbon (%weight) | Bio3 | Isothermality (°C) | ||
T-PH-H2O | Topsoil pH (H2O) (−log (H+)) | Bio5 | Max Temperature of Warmest Month (°C) | ||
T-BS | Topsoil Base Saturation | Bio6 | Min Temperature of Coldest Month (°C) | ||
T-ECE | Topsoil ECE (dS/m) | Bio12 | Annual Precipitation (mm) | ||
T-ESP | Topsoil Sodicity (ESP) (%) | Bio14 | Precipitation of Driest Month (mm) | ||
T-TEB | Topsoil TEB (cmol/Kg) | Bio15 | |||
T-CLAY | Topsoil CLAY (%wt) | Terrain Variables | ELEV | Elevation (m) | |
T-USDA-CLASS | Topsoil USDA Texture Classification (name) |
References
- Gao, Z.T.; Wu, X.C. An exploration into the geographical distribution patterns of Quercus mongolica. Prot. For. Sci. Technol. 2005, 2, 75–84. [Google Scholar]
- Tian, J.Q. Geographical Substitution Distribution and Climatic Constraints of Deciduous Oak Trees in China; Institute of Botany, Chinese Academy of Sciences: Beijing, China, 2007. [Google Scholar]
- Han, J.S.; Zhao, H.Y.; Zhu, L.J.; Zhang, Y.D.; Li, Z.S.; Wang, X.C. Comparison of radial growth responses of Quercus mongolica and Phellodendron amurense in Xiaoxing’an Mountains to climate change. Chin. J. Appl. Ecol. 2019, 30, 2218–2230. [Google Scholar]
- Niu, S.L.; Wan, S.Q.; Ma, P. Adaptation and mitigation of climate change by terrestrial ecosystems and biodiversity. Bull. Chin. Acad. Sci. 2009, 4, 421–427. [Google Scholar]
- Li, X.X.; Liang, E.Y.; Camarero, J.J.; Rossi, R.; Zhang, J.T.; Zhu, H.F.; Fu, Y.S.; Sun, J.; Wang, T.; Piao, S.L.; et al. Warming induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. Natl. Sci. Rev. 2023, 10, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, J.Y.; Liu, J.F.; Chang, E.M.; Zhang, X.F. Differences in the responses of radial growth of three oak species to climatic factors and predictions at the northern margin of the warm temperate zone. For. Res. 2023, 36, 62–70. [Google Scholar]
- Pacifici, M.; Visconti, P.; Butchart, S.; Watson, J.E.M.; Cassola, F.M.; Rondinini, C. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 2017, 7, 205–208. [Google Scholar] [CrossRef]
- Manos, L.M.; Valavanis, V.D.; Karakassis, I. Modelling the effects of climate change on the distribution of benthic indicator species in the Eastern Mediterranean Sea. Sci. Total Environ. 2019, 667, 16–24. [Google Scholar]
- Xu, Z.L.; Peng, H.H.; Peng, S.Z. Development and evaluation methods of species distribution models. Acta Ecol. Sin. 2015, 35, 557–567. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Brian, D.R. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- McCullagh, P. Generalized linear models. Eur. J. Oper. Res. 1989, 16, 285–292. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Buja, A. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 1994, 89, 1255–1270. [Google Scholar] [CrossRef]
- Vayssières, M.P.; Plant, R.E.; Allen-Diaz, B.H. Classification trees: An alternative non-parametric approach for predicting species distributions. J. Veg. Sci. 2000, 11, 679–694. [Google Scholar] [CrossRef]
- Nix, H.A.; Busby, J. BIOCLIM, a bioclimatic analysis and prediction system. Div. Water Land Resour. Canberra 1986, 6, 8–9. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Zhu, N. Simulation of suitable habitat distribution of Magnolia officinalis based on Ensemble Model. J. Sichuan Agric. Univ. 2019, 37, 481–489. [Google Scholar]
- Ge, X.Y.; Ding, J.L.; Teng, D.X.; Xie, B.Q.; Zhang, X.L.; Wang, J.J.; Han, L.J.; Bao, Q.L.; Wang, J.Z. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102969. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Duque, L.J.; Navarro-Cerrillo, R.; Gils, H.; Groen, T.A. Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia: Identification of priority areas for intervention. For. Ecol. Manag. 2018, 417, 122–136. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 2016, 6, 5973–5986. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Zhang, H.R.; Lei, X.D. Spatial pattern of Quercus mongolica population in natural secondary forest. Acta Ecol. Sin. 2018, 38, 9–17. [Google Scholar]
- Lee, K.C. The resource status and management strategy of Quercus mongolica. Investig. Des. For. Inn. Mong. 1996, 1, 14–16. [Google Scholar]
- Yang, L.; Wang, X.Y.; Zhang, H.; Zhang, T.X.; Yang, C.J. Allelopathy of the aqueous extract from the dead leaves of Quercus mongolica on orchids. Chin. J. Agron. 2021, 37, 71–76. [Google Scholar]
- Du, Q.; Wei, C.H.; Liang, C.T.; Yu, J.H.; Wang, H.M.; Wang, W.J. Analyzing the responses of 12 dominant tree species in Northeast China to climate change using the MaxEnt model. Acta Ecol. Sin. 2022, 42, 9712–9725. [Google Scholar]
- Pan, S.A.; Li, X.H.; Feng, Q.H.; Liu, X.L.; Sun, J.X. Response of Abies faxoniana in Sichuan Province to climate change and its potential distribution pattern. Acta Ecol. Sin. 2022, 42, 4055–4064. [Google Scholar]
- Li, S.; Shi, M.C.; Liu, X.Y.; Zhao, H.; Sun, L.S.; Ke, Z.F.; Zhou, H. Precise spatial distribution suitability of Pinus massoniana in Hubei Province. Acta Ecol. Sin. 2019, 39, 1960–1968. [Google Scholar]
- Li, F.; Zhou, G.S.; Cao, M.C. Simulation of the response of the geographical distribution of Larix gmelini to climate change. Chin. J. Appl. Ecol. 2006, 12, 2255–2260. [Google Scholar]
- Liu, J.Q.; Wei, G.K.; Shi, C.Q.; Zhao, T.Y.; Qian, Y.K. Distribution of suitable areas for drought-resistant afforestation tree species in northern China based on the MaxEnt model. J. Beijing For. Univ. 2022, 44, 63–77. [Google Scholar]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Vanagas, G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interact. Cardiovasc. Thorac. Surg. 2004, 3, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Dormaan, C.F.; Elith, J.; Buchman, C.; Bacher, S.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecograghy 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Gama, M.; Crespo, D.; Dolbeth, M.; Anastácio, P.M. Ensemble forecasting of Corbicula fluminea worldwide distribution: Projections of the impact of climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 1, 675–684. [Google Scholar] [CrossRef]
- Allouche, O.; Kadmon, T.R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Wu, Y.N.; Ma, Y.J.; Liu, W.L.; Li, X.Y.; Wang, P. BIOMOD-based simulation of Plateau pika distribution in the Qinghai Lake River Basin. J. Zool. 2017, 52, 390–402. [Google Scholar]
- Guo, K.Q.; Jiang, X.L.; Xu, G.B. The potential suitable area of Cyclobalanopsis and the influence of climate change on its distribution. J. Ecol. 2021, 40, 2563–2574. [Google Scholar]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Zhang, D.H.; Wang, X.K.; Zhang, L.; Huang, B.B. Research on the classification methods of ecosystem service of soil retention for large scale choropleth mapping. Acta Ecol. Sin. 2021, 41, 1391–1401. [Google Scholar]
- Zhao, G.S.; Cui, X.Q.; Sun, J.J.; Li, T.T.; Wang, Q.; Ye, X.Z.; Fan, B.G. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2021, 12, 188–196. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, L.; Zhang, A.P.; Wang, Y.; Huang, D.; Wu, X.G.; Sun, X.M.; Xiong, Q.L.; Pan, K.W. Response of distribution pattern of relict plant Tsuga longibracteata to future climate change. J. Ecol. 2018, 38, 8934–8945. [Google Scholar]
- Xie, L.H.; Huang, Q.Y.; Cao, H.J.; Yang, F.; Wang, J.F.; Ni, H.W. Responses of Quercus mongolica and Tilia amurensis radial growth to climate change at Wudalianchi volcano. J. Northwest For. Coll. 2021, 36, 1–9. [Google Scholar]
- The Chinese Academy of Sciences Flora of the People’s Republic of China Editorial Board; Flora of the People’s Republic of China, Science Press: Beijing, China, 1984.
- Chu, Z.; Guo, J.; Zhao, J. Impacts of future climate change on agroclimatic resources in Northeast China. J. Geogr. Sci. 2017, 27, 1044–1058. [Google Scholar] [CrossRef]
- Tang, X.G.; Yuan, Y.D.; Zhang, J.C. Effects of climate change on the suitable habitats and niche of Chinese fir. Bull. Bot. Res. 2022, 42, 151–160. [Google Scholar]
- Shen, Y.; Wang, G. Key findings and assessment results of IPCC WGI fifth assessment report. J. Glaciol. Geocryol. 2013, 35, 1068–1076. [Google Scholar]
- Du, B.Y. Analysis of Potential Distribution Patterns of Larix gmelini and Quercus mongolica under Climate Change Scenarios Using the MaxEnt Model in the Greater Khingan Mountains; Harbin Normal University: Harbin, China, 2023. [Google Scholar]
Climate Scenarios | Total Suitable Area (km2) | Most Suitable Area (km2) | Contraction Area (km2) | Expansion Area (km2) | Unchanged Area (km2) | Net Reduction Area (km2) | Contraction Rate (%) | Expansion Rate (%) | Unchanged Rate (%) |
---|---|---|---|---|---|---|---|---|---|
Current | 749,947.91 | 473,784.72 | |||||||
SSP126-2050s | 593,784.72 | 242,031.25 | 284,660.23 | 128,497.04 | 465,287.68 | 156,163.19 | 37.96 | 17.13 | 62.04 |
SSP126-2090s | 604,114.58 | 281,215.27 | 53,095.70 | 63,425.56 | 540,689.02 | −10,329.86 | 8.94 | 10.68 | 91.06 |
SSP245-2050s | 461,232.63 | 164,513.88 | 376,955.08 | 88,239.80 | 372,992.83 | 288,715.28 | 50.26 | 11.77 | 49.74 |
SSP245-2090s | 313,645.83 | 57,673.61 | 195,860.86 | 48,274.06 | 265,371.77 | 147,586.80 | 42.46 | 10.47 | 57.54 |
SSP585-2050s | 335,451.38 | 60,503.47 | 483,890.80 | 69,394.27 | 266,057.11 | 414,496.53 | 64.52 | 9.25 | 35.48 |
SSP585-2090s | 267,187.50 | 11,284.72 | 199,172.21 | 130,908.33 | 136,279.17 | 68,263.88 | 59.37 | 39.02 | 40.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Li, F.; Hai, L.; Sa, R.; Gao, M.; Wang, Z.; Tie, N. Priority Conservation Area of Quercus mongolica Under Climate Change: Application of an Ensemble Modeling. Sustainability 2024, 16, 9816. https://doi.org/10.3390/su16229816
Liu L, Li F, Hai L, Sa R, Gao M, Wang Z, Tie N. Priority Conservation Area of Quercus mongolica Under Climate Change: Application of an Ensemble Modeling. Sustainability. 2024; 16(22):9816. https://doi.org/10.3390/su16229816
Chicago/Turabian StyleLiu, Lei, Fengzi Li, Long Hai, Rula Sa, Minglong Gao, Zirui Wang, and Niu Tie. 2024. "Priority Conservation Area of Quercus mongolica Under Climate Change: Application of an Ensemble Modeling" Sustainability 16, no. 22: 9816. https://doi.org/10.3390/su16229816