Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data
<p>Overall technical framework for landslide risk assessment.</p> "> Figure 2
<p>Distribution of landslide events by countries.</p> "> Figure 3
<p>Experimental Pipeline.</p> "> Figure 4
<p>Evolution of metrics for landslide size and trigger predictions across individuals.</p> "> Figure 5
<p>Confusion matrix for landslide size classification.</p> "> Figure 6
<p>Confusion matrix for landslide trigger classification.</p> "> Figure 7
<p>Map of landslide risk assessment on Viti Levu Island, Fiji. Red indicates areas with a high probability of landslides according to the model, while green represents areas with low risk.</p> "> Figure 8
<p>Research structure overview.</p> "> Figure A1
<p>Island landslides maps: (<b>a</b>) England and Ireland; (<b>b</b>) Philippines; (<b>c</b>) Hawaii; (<b>d</b>) Fiji.</p> "> Figure A2
<p>Landslides maps: (<b>a</b>) Caribbean Basin; (<b>b</b>) Indonesia and Malaysia; (<b>c</b>) East Australia and New Zealand; (<b>d</b>) Korea and Japan; (<b>e</b>) Columbia and Ecuador; (<b>f</b>) Rio de Janeiro.</p> "> Figure A3
<p>Landslides maps: (<b>a</b>) Alps and Balkans; (<b>b</b>) Caucasus; (<b>c</b>) Lake Victoria Region; (<b>d</b>) West Africa.</p> "> Figure A4
<p>Landslides maps (<b>a</b>) Himalaya, (<b>b</b>) China, (<b>c</b>) Western Ghats, (<b>d</b>) South-East Asia.</p> "> Figure A5
<p>USA landslides maps: (<b>a</b>) Washington; (<b>b</b>) California; (<b>c</b>) the North West states; (<b>d</b>) Utah and Colorado.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Global Landslide Catalog
2.2. Obtaining Climate Data
2.3. Classification Methodology
- Number of layers:
- Neurons per layer:
- Activation functions:
- Optimizers:
- Learning rates:
- Loss functions:The overall hyperparameter search space is given by the Cartesian product of these individual spaces:Here, each element of is a tuple of the form , where
- l is the number of layers chosen from ,
- n is the number of neurons per layer chosen from ,
- a is the activation function chosen from ,
- o is the optimizer chosen from ,
- r is the learning rate chosen from ,
- f is the loss function chosen from .
- Initialize a population of N candidate solutions (DNN architectures) at generation :
- Evaluate the fitness of each individual in the population using the classification accuracy on a validation set:
- Select a subset of individuals based on their fitness scores to act as parents for the next generation. This can be carried out using methods such as roulette wheel selection or tournament selection:
- Apply crossover operations to pairs of parent architectures to produce offspring architectures. For instance, if and are two parents, the offspring and can be generated as
- Apply mutation operations to the offspring architectures to introduce genetic diversity. For an architecture , a mutation might alter one or more hyperparameters:
- Evaluate the fitness of the offspring architectures:
- Replace the least fit individuals in the population with the new offspring, potentially incorporating elitism to retain the best solutions:
- Repeat the evaluation, selection, crossover, mutation, and replacement steps for a predefined number of generations G or until convergence criteria are met:
3. Results
3.1. DNN Results
3.2. Case Study: Application of the Approach on Viti Levu Island, Fiji
- Defining grid parameters: The first step involves setting the parameters for the grid of the study area. This includes specifying the minimum and maximum co-ordinates that define the region of interest. For Viti Levu Island, the boundaries selected were a minimum latitude of −18.5, a maximum latitude of −17.3, a minimum longitude of 177.0, and a maximum longitude of 179.5.
- Grid division: By using these parameters, the area is divided into a grid with evenly sized sectors. The number of sectors is determined based on the desired division in terms of latitude and longitude, resulting in a grid with specific sector sizes.
- Filtering out water surfaces: In order to refine the analysis, sectors with a large proportion of water surfaces (such as oceans) are excluded. These sectors are marked as non-informative for further analysis.
- Integration of climate data: For the remaining sectors, climate data for the 10 years preceding each landslide event are integrated. This includes variables such as rainfall, humidity, pressure, and temperature. These climate data are then reduced using principal component analysis (PCA), which helps to highlight the principal climate components relevant to landslide triggers.
- Classification and risk assessment: By using geospatial co-ordinates and reduced climate data, the probability of landslide occurrence is assessed. Optimized DNN models, with parameters tuned through GA, are employed to classify the likelihood of landslides. The optimized models achieved accuracies of 0.67 and 0.82 for classifying landslide triggers and sizes, respectively.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Geographical Description of Landslides Worldwide
References
- Fernández, P.; Ceacero-Moreno, M. Urban sustainability and natural hazards management; designs using simulations. Sustainability 2021, 12, 649. [Google Scholar] [CrossRef]
- Shim, J.H.; Kim, C.I. Measuring resilience to natural hazards: Towards sustainable hazard mitigation. Sustainability 2015, 7, 14153–14185. [Google Scholar] [CrossRef]
- Porȩbska, A.; Godyń, I.; Radzicki, K.; Nachlik, E.; Rizzi, P. Built heritage, sustainable development, and natural hazards: Flood protection and UNESCO world heritage site protection strategies in Krakow, Poland. Sustainability 2019, 11, 4886. [Google Scholar] [CrossRef]
- Nanehkaran, Y.A.; Chen, B.; Cemiloglu, A.; Chen, J. Riverside landslide susceptibility overview: Leveraging artificial neural networks and machine learning in accordance with the United Nations (UN) sustainable development goals. Water 2023, 15, 2707. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Li, S.; Xiong, R.; Li, X.; Gao, L.; Guo, X. Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River. Sustainability 2024, 16, 4416. [Google Scholar] [CrossRef]
- Habumugisha, J.M.; Chen, N.; Rahman, M.; Islam, M.M. Landslide susceptibility mapping with deep learning algorithms. Sustainability 2022, 14, 1734. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q. Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring. Geomorphology 2018, 309, 77–85. [Google Scholar] [CrossRef]
- Tehrani, F.S.; Calvello, M.; Liu, Z.; Zhang, L.; Lacasse, S. Machine learning and landslide studies: Recent advances and applications. Nat. Hazards 2022, 114, 1197–1245. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Korup, O.; Stolle, A. Landslide prediction from machine learning. Geol. Today 2014, 30, 26–33. [Google Scholar] [CrossRef]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Goetz, J.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Micheletti, N.; Foresti, L.; Robert, S.; Leuenberger, M.; Pedrazzini, A.; Jaboyedoff, M.; Kanevski, M. Machine learning feature selection methods for landslide susceptibility mapping. Math. Geosci. 2014, 46, 33–57. [Google Scholar] [CrossRef]
- Esteghamati, M.Z. Leveraging machine learning techniques to support a holistic performance-based seismic design of civil structures. In Interpretable Machine Learning for the Analysis Design Assessment and Informed Decision Making for Civil Infrastructure; Elsevier: Amsterdam, The Netherlands, 2024; pp. 25–49. [Google Scholar]
- Kikuchi, T.; Sakita, K.; Nishiyama, S.; Takahashi, K. Landslide susceptibility mapping using automatically constructed CNN architectures with pre-slide topographic DEM of deep-seated catastrophic landslides caused by Typhoon Talas. Nat. Hazards 2023, 117, 339–364. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping: A survey and a case study. In Landslides: Theory, Practice and Modelling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 283–301. [Google Scholar]
- Chen, X.; Chen, W. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena 2021, 196, 104833. [Google Scholar] [CrossRef]
- Adachi, K. Global Landslide Data. 2019. Available online: https://www.kaggle.com/datasets/kazushiadachi/global-landslide-data (accessed on 26 June 2024).
- NASA Langley Research Center (LaRC). NASA POWER API: Daily Data Retrieval. 2024. Available online: https://power.larc.nasa.gov (accessed on 26 June 2024).
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Lin, W.W.; Mak, M.W. Wav2Spk: A Simple DNN Architecture for Learning Speaker Embeddings from Waveforms. In Proceedings of the Interspeech 2020, Shanghai, China, 25–29 October 2020; pp. 3211–3215. [Google Scholar]
- Fidan, S.; Tanyaş, H.; Akbaş, A.; Lombardo, L.; Petley, D.N.; Görüm, T. Understanding fatal landslides at global scales: A summary of topographic, climatic, and anthropogenic perspectives. Nat. Hazards 2024, 120, 6437–6455. [Google Scholar] [CrossRef]
- Novellino, A.; Pennington, C.; Leeming, K.; Taylor, S.; Alvarez, I.G.; McAllister, E.; Arnhardt, C.; Winson, A. Mapping landslides from space: A review. Landslides 2024, 21, 1041–1052. [Google Scholar] [CrossRef]
- Xie, Y.; Zhan, N.; Zhu, J.; Xu, B.; Chen, H.; Mao, W.; Luo, X.; Hu, Y. Landslide extraction from aerial imagery considering context association characteristics. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103950. [Google Scholar] [CrossRef]
- Guo, H.; Martínez-Graña, A. Susceptibility of Landslide Debris Flow in Yanghe Township Based on Multi-Source Remote Sensing Information Extraction Technology (Sichuan, China). Land 2024, 13, 206. [Google Scholar] [CrossRef]
- Sharma, A.; Sajjad, H.; Roshani; Rahaman, M.H. A systematic review for assessing the impact of climate change on landslides: Research gaps and directions for future research. Spat. Inf. Res. 2024, 32, 165–185. [Google Scholar] [CrossRef]
- Jiang, S.H.; Jie, H.H.; Xie, J.; Huang, J.; Zhou, C.B. Probabilistic back-analysis of rainfall-induced landslides for slope reliability prediction with multi-source information. J. Rock Mech. Geotech. Eng. 2024; in press. [Google Scholar]
- El-Hassani, F.Z.; Amri, M.; Joudar, N.E.; Haddouch, K. A new optimization model for MLP hyperparameter tuning: Modeling and resolution by real-coded genetic algorithm. Neural Process. Lett. 2024, 56, 105. [Google Scholar] [CrossRef]
- Sun, H.; Yang, S.; Wang, R.; Yang, K. Study on a Landslide Segmentation Algorithm Based on Improved High-Resolution Networks. Appl. Sci. 2024, 14, 6459. [Google Scholar] [CrossRef]
- Khalili, M.A.; Palumbo, S.; Madadi, S.; Bausilio, G.; Voosoghi, B.; Calcaterra, D.; Di Martire, D. Enhancing landslide prediction through advanced transformer-based models: Integrating SAR imagery and environmental data. e-J. Nondestruct. Test. 2024, 29, 1–10. [Google Scholar] [CrossRef]
- Dzjumajev, S. A Study of Mitigating Advesarial Attacks against Machine Learning Models. Master’s Thesis, University of Agder, Kristiansand, Norway, 2024. [Google Scholar]
- Cui, H.; Ji, J.; Hürlimann, M.; Medina, V. Probabilistic and physically-based modelling of rainfall-induced landslide susceptibility using integrated GIS-FORM algorithm. Landslides 2024, 21, 1461–1481. [Google Scholar] [CrossRef]
- Zeng, T.; Gong, Q.; Wu, L.; Zhu, Y.; Yin, K.; Peduto, D. Double-index rainfall warning and probabilistic physically based model for fast-moving landslide hazard analysis in subtropical-typhoon area. Landslides 2024, 21, 753–773. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, T. Deep Learning for Exploring Landslides with Remote Sensing and Geo-Environmental Data: Frameworks, Progress, Challenges, and Opportunities. Remote Sens. 2024, 16, 1344. [Google Scholar] [CrossRef]
- Guo, H.; Martínez-Graña, A. Landslide Hazard Prediction Based on Small Baseline Subset–Interferometric Synthetic-Aperture Radar Technology Combined with Land-Use Dynamic Change and Hydrological Conditions (Sichuan, China). Remote Sens. 2024, 16, 2715. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; van Westen, C.; Lombardo, L. Landslide hazard spatiotemporal prediction based on data-driven models: Estimating where, when and how large landslide may be. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103631. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Van Ty, T.; Nam, N.D.G.; Lien, B.T.B.; Thanh, N.T.; Cong, N.P.; Meraj, G.; Kumar, P.; Van Thinh, L.; Van Duy, D.; et al. Modelling and predicting annual rainfall over the Vietnamese Mekong Delta (VMD) using SARIMA. Discov. Geosci. 2024, 2, 19. [Google Scholar] [CrossRef]
- Jin, A.; Yang, S.; Huang, X. Landslide displacement prediction based on time series and long short-term memory networks. Bull. Eng. Geol. Environ. 2024, 83, 264. [Google Scholar] [CrossRef]
- Kashyap, R.; Pandey, A.C.; Parida, B.R. Spatio-temporal variability of monsoon precipitation and their effect on precipitation triggered landslides in relation to relief in Himalayas. Spat. Inf. Res. 2021, 29, 857–869. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C. Terrain-based mapping of landslide susceptibility using a geographical information system: A case study. Can. Geotech. J. 2001, 38, 911–923. [Google Scholar] [CrossRef]
- Umar, I.H.; Lin, H.; Hassan, J.I. Transforming Landslide Prediction: A Novel Approach Combining Numerical Methods and Advanced Correlation Analysis in Slope Stability Investigation. Appl. Sci. 2024, 14, 3685. [Google Scholar] [CrossRef]
- Racoma, B.A.B.; Klingaman, N.P.; Holloway, C.E.; Schiemann, R.K.; Bagtasa, G. Tropical cyclone characteristics associated with extreme precipitation in the northern Philippines. Int. J. Climatol. 2022, 42, 3290–3307. [Google Scholar] [CrossRef]
- Cayanan, E.O.; Chen, T.C.; Argete, J.C.; Yen, M.C.; D. NILO, P. The effect of tropical cyclones on southwest monsoon rainfall in the Philippines. J. Meteorol. Soc. Jpn. Ser. II 2011, 89, 123–139. [Google Scholar] [CrossRef]
- Ribera, P.; García Herrera, R.; Gimeno, L. Historical Deadly Typhoons in the Philippines. 2008. Available online: https://docta.ucm.es/entities/publication/8d7a53b0-0ac1-4adf-b14d-d342235be406 (accessed on 14 August 2024).
- Hearn, G.J.; Roy Hart, J. Settlements and slides: A large landslide case study from the Central Cordillera of the Philippines. Q. J. Eng. Geol. Hydrogeol. 2020, 53, 62–73. [Google Scholar] [CrossRef]
- Abancó, C.; Bennett, G.L.; Matthews, A.J.; Matera, M.A.M.; Tan, F.J. The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Nat. Hazards Earth Syst. Sci. 2021, 21, 1531–1550. [Google Scholar] [CrossRef]
- Gabriel, M.J. Dynamics and drivers of deforestation in the Philippines. Ecosyst. Dev. J. 2023, 13, 18–32. [Google Scholar]
- Xue, L.; Wang, Y.; Newman, A.J.; Ikeda, K.; Rasmussen, R.M.; Giambelluca, T.W.; Longman, R.J.; Monaghan, A.J.; Clark, M.P.; Arnold, J.R. How will rainfall change over Hawai ‘i in the future? High-resolution regional climate simulation of the Hawaiian Islands. Bull. Atmos. Sci. Technol. 2020, 1, 459–490. [Google Scholar] [CrossRef]
- Ward, D.J.; Galewsky, J. Exploring landscape sensitivity to the Pacific Trade Wind Inversion on the subsiding island of Hawaii. J. Geophys. Res. Earth Surf. 2014, 119, 2048–2069. [Google Scholar] [CrossRef]
- Kitayama, K.; Mueller-Dombois, D. An altitudinal transect analysis of the windward vegetation on Haleakala, a Hawaiian island mountain:(1) climate and soils. Phytocoenologia 1994, 24, 111–133. [Google Scholar] [CrossRef]
- Garcia, M.O.; Frey, F.A.; Grooms, D.G. Petrology of volcanic rocks from Kaula Island, Hawaii: Implications for the origin of Hawaiian phonolites. Contrib. Mineral. Petrol. 1986, 94, 461–471. [Google Scholar] [CrossRef]
- Porro, R.; Kim, K.; Spirandelli, D.; Lowry, K. Evaluating erosion management strategies in Waikiki, Hawaii. Ocean. Coast. Manag. 2020, 188, 105113. [Google Scholar] [CrossRef]
- Deo, A.; Chand, S.S.; Ramsay, H.; Holbrook, N.J.; McGree, S.; Magee, A.; Bell, S.; Titimaea, M.; Haruhiru, A.; Malsale, P.; et al. Tropical cyclone contribution to extreme rainfall over southwest Pacific Island nations. Clim. Dyn. 2021, 56, 3967–3993. [Google Scholar] [CrossRef]
- Chen, J.K.; Taylor, F.W.; Edwards, R.L.; Cheng, H.; Burr, G. Recent emerged reef terraces of the Yenkahe resurgent block, Tanna, Vanuatu: Implications for volcanic, landslide and tsunami hazards. J. Geol. 1995, 103, 577–590. [Google Scholar] [CrossRef]
- Kouwenhoven, P. Profile of Risks from Climate Change and Geohazards in Vanuatu: Draft Report; CLIMsystems: Hamilton, New Zealand, 2013; Available online: https://www.nab.vu/sites/default/files/nab/documents/03/04/2014%20-%2012:45/risk_profile_report_draft_1.pdf (accessed on 14 August 2024).
- Ioualalen, M.; Pelletier, B.; Gordillo, G.S. Investigating the March 28th 1875 and the September 20th 1920 earthquakes/tsunamis of the Southern Vanuatu arc, offshore Loyalty Islands, New Caledonia. Tectonophysics 2017, 709, 20–38. [Google Scholar] [CrossRef]
- Németh, K.; Cronin, S.J. Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu. J. Volcanol. Geotherm. Res. 2009, 180, 246–258. [Google Scholar] [CrossRef]
- Eckardt, R.; Herold, M.; Sambale, J.; Weaver, S. Monitoring deforestation patterns and processes in the Pacific island state of Vanuatu. In Proceedings of the Geoinformatics Forum, Salzburg, Austria, 1–4 July 2008. [Google Scholar]
- Siméoni, P.; Lebot, V. Spatial representation of land use and population density: Integrated layers of data contribute to environmental planning in Vanuatu. Hum. Ecol. 2012, 40, 541–555. [Google Scholar] [CrossRef]
- Peña, M.; Douglas, M.W. Characteristics of wet and dry spells over the Pacific side of Central America during the rainy season. Mon. Weather. Rev. 2002, 130, 3054–3073. [Google Scholar] [CrossRef]
- Bertsch, F.; Alvarado, A.; Henriquez, C.; Mata, R. Properties, geographic distribution, and management of major soil orders of Costa Rica. In Quantifying Sustainable Development; Elsevier: Amsterdam, The Netherlands, 2000; pp. 265–294. [Google Scholar]
- Ferdinand, I.; Parker, E. Hurricane Risk Reduction Strategies in the Windward Islands; Coventry Centre for Disaster Management, Coventry University: Coventry, UK, 2005. [Google Scholar]
- Walsh, R. The influence of climate, lithology and time on drainage density and relief development in the tropical volcanic terrain of the Windward Islands. In Environmental Change and Tropical Geomorphology; Routledge: Oxfordshire, UK, 2020; pp. 93–122. [Google Scholar]
- Marcelin, L.H.; Cela, T.; Shultz, J.M. Haiti and the politics of governance and community responses to Hurricane Matthew. Disaster Health 2016, 3, 151–161. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.W.; Schmitt, R.G. Map of Landslides Triggered by the January 12, 2010, Haiti Earthquake; Technical Report; US Geological Survey: Reston, VA, USA, 2016. [Google Scholar]
- White, T.A. Policy Lessons from History and Natural Resource Projects in Rural Haiti; Department of Forest Resources, University of Minnesota: St. Paul, MN, USA, 1994. Available online: https://ageconsearch.umn.edu/record/11892/?v=pdf (accessed on 14 August 2024).
- Mompremier, R.; Her, Y.; Hoogenboom, G.; Song, J. Effects of deforestation and afforestation on water availability for dry bean production in Haiti. Agric. Ecosyst. Environ. 2022, 325, 107721. [Google Scholar] [CrossRef]
- Lee, H.S. General rainfall patterns in Indonesia and the potential impacts of local seas on rainfall intensity. Water 2015, 7, 1751–1768. [Google Scholar] [CrossRef]
- Wangwongchai, A.; Sixiong, Z.; Qingcun, Z. A case study on a strong tropical disturbance and record heavy rainfall in Hat Yai, Thailand during the winter monsoon. Adv. Atmos. Sci. 2005, 22, 436–450. [Google Scholar] [CrossRef]
- Wicke, B.; Sikkema, R.; Dornburg, V.; Faaij, A. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 2011, 28, 193–206. [Google Scholar] [CrossRef]
- Kingma, J. The tectonic history of New Zealand. N. Zealand J. Geol. Geophys. 1959, 2, 1–55. [Google Scholar] [CrossRef]
- Jessop, K.; Daczko, N.; Piazolo, S. Tectonic cycles of the New England Orogen, eastern Australia: A review. Aust. J. Earth Sci. 2019, 66, 459–496. [Google Scholar] [CrossRef]
- Allen, S.K.; Cox, S.C.; Owens, I.F. Rock avalanches and other landslides in the central Southern Alps of New Zealand: A regional study considering possible climate change impacts. Landslides 2011, 8, 33–48. [Google Scholar] [CrossRef]
- Kim, S.W.; Chun, K.W.; Otsuki, K.; Shinohara, Y.; Kim, M.I.; Kim, M.S.; Lee, D.K.; Seo, J.I.; Choi, B.K. Heavy rain types for triggering shallow landslides in South Korea 2015, 60, 243–249. J. Fac. Agric. Kyushu Univ. 2015, 60, 243–249. [Google Scholar]
- Park, D.S.R.; Ho, C.H.; Kim, J.H.; Kim, H.S. Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Obara, K. Characteristic activities of slow earthquakes in Japan. Proc. Jpn. Acad. Ser. B 2020, 96, 297–315. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Delgado, H.; Petley, D.N.; Bermúdez, M.A.; Sepúlveda, S.A. Fatal landslides in Colombia (from historical times to 2020) and their socio-economic impacts. Landslides 2022, 19, 1689–1716. [Google Scholar] [CrossRef]
- Montero-Olarte, J. The physical environment and landslides in the Colombian Andean tropics. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018; pp. 1445–1451. [Google Scholar]
- Fernandes, N.F.e.a. Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling. Catena 2004, 55, 163–181. [Google Scholar] [CrossRef]
- Savi, S.; Comiti, F.; Strecker, M.R. Pronounced increase in slope instability linked to global warming: A case study from the eastern European Alps. Earth Surf. Process. Landforms 2021, 46, 1328–1347. [Google Scholar] [CrossRef]
- Schlögl, M.; Avian, M.; Richter, G.; Thaler, T.; Heiss, G.; Fuchs, S.; Lenz, G. On the nexus between landslide susceptibility and transport infrastructure–agent-based vulnerability assessment of rural road networks in the Eastern European Alps. Nat. Hazards Earth Syst. Sci. 2018, 19, 201–219. [Google Scholar] [CrossRef]
- Matossian, A.O.; Baghdasaryan, H.; Avagyan, A.; Igityan, H.; Gevorgyan, M.; Havenith, H.B. A new landslide inventory for the Armenian Lesser Caucasus: Slope failure morphologies and seismotectonic influences on large landslides. Geosciences 2020, 10, 111. [Google Scholar] [CrossRef]
- Tibaldi, A.; Oppizzi, P.; Gierke, J.; Oommen, T.; Tsereteli, N.; Gogoladze, Z. Landslides near Enguri dam (Caucasus, Georgia) and possible seismotectonic effects. Nat. Hazards Earth Syst. Sci. 2019, 19, 71–91. [Google Scholar] [CrossRef]
- Ngecu, W.M.; Nyamai, C.; Erima, G. The extent and significance of mass-movements in Eastern Africa: Case studies of some major landslides in Uganda and Kenya. Environ. Geol. 2004, 46, 1123–1133. [Google Scholar] [CrossRef]
- Igwe, O. The geotechnical characteristics of landslides on the sedimentary and metamorphic terrains of South-East Nigeria, West Africa. Geoenviron. Disasters 2015, 2, 1. [Google Scholar] [CrossRef]
- Igwe, O.; Mode, A.W.; Nnebedum, O.; Okonkwo, I.; Oha, I. The mechanisms and characteristics of a complex rock-debris avalanche at the Nigeria–Cameroon border, West Africa. Geomorphology 2015, 234, 1–10. [Google Scholar] [CrossRef]
- Sarkar, S.; Kanungo, D.; Mehrotra, G. Landslide hazard zonation: A case study in Garhwal Himalaya, India. Mt. Res. Dev. 1995, 15, 301–309. [Google Scholar] [CrossRef]
- Dortch, J.; Owen, L.; Haneberg, W.; Caffee, M. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 2009, 28, 1037–1054. [Google Scholar] [CrossRef]
- Du, J.; Glade, T.; Woldai, T.; Chai, B.; Zeng, B. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas. Eng. Geol. 2020, 270, 105572. [Google Scholar] [CrossRef]
- Wang, D.; Hao, M.; Chen, S.; Meng, Z.; Jiang, D.; Ding, F. Assessment of landslide susceptibility and risk factors in China. Nat. Hazards 2021, 108, 3045–3059. [Google Scholar] [CrossRef]
- Liu, X.; Miao, C. Large-scale assessment of landslide hazard, vulnerability and risk in China. Geomat. Nat. Hazards Risk 2018, 9, 1037–1052. [Google Scholar] [CrossRef]
- Kuriakose, S.; Sankar, G.; Muraleedharan, C. History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environ. Geol. 2009, 57, 1553–1568. [Google Scholar] [CrossRef]
- Sajinkumar, K.; Anbazhagan, S. Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India. Nat. Hazards 2015, 75, 953–973. [Google Scholar] [CrossRef]
- Martha, T.; Roy, P.; Khanna, K.; Mrinalni, K.; Kumar, K. Landslides mapped using satellite data in the Western Ghats of India after excess rainfall during August 2018. Curr. Sci. 2019, 117, 804–812. [Google Scholar] [CrossRef]
- Lee, S.; Dan, N. Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam: Focus on the relationship between tectonic fractures and landslides. Environ. Geol. 2005, 48, 778–787. [Google Scholar] [CrossRef]
- Van Tien, P.; Luong, L.; Duc, D.; Trinh, P.; Quynh, D. Rainfall-induced catastrophic landslide in Quang Tri Province: The deadliest single landslide event in Vietnam in 2020. Landslides 2021, 18, 2323–2327. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, Ø.B. Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Nat. Hazards 2013, 66, 707–730. [Google Scholar] [CrossRef]
- Harp, E. Landslides and Landslide Hazards in Washington State Due to February 5–9, 1996 Storm; USGS: Reston, VA, USA, 1997.
- Pierson, T.; Evarts, R.; Bard, J. Landslides in the Western Columbia Gorge, Skamania County, Washington; US Geological Survey: Reston, VA, USA, 2016.
- Schuster, R.; Chleborad, A. Landslides in Washington and Oregon—An Overview. Open-File Rep. 1989, 89, 86. [Google Scholar]
- Jibson, R. The 2005 La Conchita, California, landslide. Landslides 2006, 3, 73–78. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Fielding, E.J.; Huang, M.H.; Bennett, G.L.; Liang, C.; Schulz, W.H. Widespread initiation, reactivation, and acceleration of landslides in the northern California Coast Ranges due to extreme rainfall. J. Geophys. Res. Earth Surface 2019, 124, 1782–1797. [Google Scholar] [CrossRef]
- Slosson, J.; Krohn, J. Southern California landslides of 1978 and 1980. In Debris Flows in Southern California and Their Relation to Landslide and Flood Hazards; Caltech: Pasadena, CA, USA, 1978. [Google Scholar]
- Lu, Z.; Kim, J. A framework for studying hydrology-driven landslide hazards in northwestern US using satellite InSAR, precipitation and soil moisture observations: Early results and future directions. GeoHazards 2021, 2, 17–40. [Google Scholar] [CrossRef]
- Mirus, B.B.; Jones, E.S.; Baum, R.L.; Godt, J.W.; Slaughter, S.; Crawford, M.M.; Lancaster, J.; Stanley, T.; Kirschbaum, D.B.; Burns, W.J.; et al. Landslides across the USA: Occurrence, susceptibility, and data limitations. Landslides 2020, 17, 2271–2285. [Google Scholar] [CrossRef]
- Xu, Y.; Schulz, W.; Lu, Z.; Kim, J.; Baxstrom, K. Geologic controls of slow-moving landslides near the US West Coast. Landslides 2021, 18, 3353–3365. [Google Scholar] [CrossRef]
- Regmi, N.; Giardino, J.; Vitek, J. Characteristics of landslides in western Colorado, USA. Landslides 2014, 11, 589–603. [Google Scholar] [CrossRef]
- Jibson, R.; Harp, E. The Springdale, Utah, landslide: An extraordinary event. Environ. Eng. Geosci. 1996, 2, 137–150. [Google Scholar] [CrossRef]
Reference | Focus | Applied Method | Results | Limitations |
---|---|---|---|---|
Merghadi et al. [9] | Overview of ML techniques in landslide susceptibility mapping | SVM, decision trees, logistic regression | Tree-based ensemble algorithms, random forest standout; robust performance in Algeria | Limited data on landslide types and sizes; potential overfitting and data quality issues |
Tehrani et al. [8] | ML applications in landslide detection; spatial and temporal forecasting | Various ML techniques | Significant advancements in complex landslide modeling; challenges remain in temporal forecasts | Lack of standardized model evaluation metrics; reliance on empirical data for temporal forecasts |
Wang et al. [10] | Landslide identification using ML and DL | CNN, SVM, random forest | CNN achieves 92.5% accuracy in landslide identification in Hong Kong; RF and SVM also effective | Data preprocessing challenges; limited improvement with additional data from DEM |
Korup et al. [12] | ML for landslide prediction based on historical data | ML, Data mining techniques | Success rates of 75–95% in predicting landslides; challenges with data quality and model selection | Difficulty in predicting specific landslide types and sizes |
Marjanovic et al. [13] | SVM in landslide susceptibility mapping | SVM, decision trees, logistic regression | SVM outperforms AHP in mapping landslide susceptibility in Fruška Gora Mountain (Serbia) | Challenges in integrating complex geological and morphological data into models |
Goetz et al. [14] | Comparison of ML and statistical models for regional susceptibility mapping | Logistic regression, GAM, SVM, random forest | Random forest and bundling show superior predictive performance; challenges with spatial artifacts | Variability in model performance across different geological settings |
Kavzoglu et al. [18] | ML versus traditional statistical methods in landslide susceptibility mapping | Various ML algorithms | ML techniques show promise in areas with limited geotechnical data; challenges in model selection | Limited studies on the scalability of ML models for large-scale landslide mapping |
Ghorbanzadeh [11] | ML methods for landslide detection using remote sensing data | ANN, SVM, RF, CNN | CNN achieves 78.26% mIOU in landslide detection; variability in CNN effectiveness based on design | Need for better understanding of CNN parameter effects; limitations in training data and augmentation |
Chen et al. [19] | KLR models for landslide susceptibility mapping | Kernel logistic regression (PLKLR, PUKLR, and RBFKLR) | PUKLR model outperforms others in Zichang City, China; valuable insights for hazard prevention | Dependence on historical data for model construction; challenges in integrating diverse datasets |
Micheletti et al. [15] | Adaptive ML techniques for landslide susceptibility mapping | SVM, random forest, AdaBoost | Random forest and AdaBoost effective in feature selection; challenges in deep-seated landslide characterization | Efficiency of adaptive SVM in landslide mapping; challenges with adaptive scaling in deep-seated landslides |
# | Num Layers | Neurons per Layer | Activation Functions | Optimizer | Alpha | Accuracy |
---|---|---|---|---|---|---|
1 | 2 | [71, 126] | [‘tanh’, ‘tanh’] | adagrad | 0.100 | 0.677789 |
2 | 2 | [64, 28] | [‘gelu’, ‘softsign’] | adam | 0.001 | 0.680290 |
3 | 9 | [72, 94, 60, 64, 55, 106, 37, 74, 9] | [‘linear’, ‘gelu’, ‘linear’, ‘softsign’, ‘softsign’, ‘sigmoid’, ‘gelu’, ‘softsign’, ‘hard_sigmoid’] | nadam | 0.0001 | 0.813857 |
4 | 4 | [59, 114, 84, 76] | [‘gelu’, ‘softmax’, ‘softplus’, ‘relu’] | rmsprop | 0.0100 | 0.818859 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tynchenko, Y.; Kukartsev, V.; Tynchenko, V.; Kukartseva, O.; Panfilova, T.; Gladkov, A.; Nguyen, V.; Malashin, I. Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data. Sustainability 2024, 16, 7063. https://doi.org/10.3390/su16167063
Tynchenko Y, Kukartsev V, Tynchenko V, Kukartseva O, Panfilova T, Gladkov A, Nguyen V, Malashin I. Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data. Sustainability. 2024; 16(16):7063. https://doi.org/10.3390/su16167063
Chicago/Turabian StyleTynchenko, Yadviga, Vladislav Kukartsev, Vadim Tynchenko, Oksana Kukartseva, Tatyana Panfilova, Alexey Gladkov, Van Nguyen, and Ivan Malashin. 2024. "Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data" Sustainability 16, no. 16: 7063. https://doi.org/10.3390/su16167063
APA StyleTynchenko, Y., Kukartsev, V., Tynchenko, V., Kukartseva, O., Panfilova, T., Gladkov, A., Nguyen, V., & Malashin, I. (2024). Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data. Sustainability, 16(16), 7063. https://doi.org/10.3390/su16167063