Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3
<p>Ty3 Reverse Transcription Cycle. (<b>A</b>) Structure of the double stranded preintegrative Ty3 DNA (black). U3, unique 3′ sequence; R, repeat sequence; U5, unique 5′ sequence; PBS, primer binding site; PPT, polypurine tract; (<b>B</b>) Genomic RNA is depicted in red. The bipartite nature of the PBS comprises sequences from both the 5′ PBS and the 3′ U3 regions; (<b>C</b>) Simplified initiation complex excluding the transfer RNA (tRNA) 5′ terminal nucleotides; (<b>D</b>) (−) strand strong stop synthesis, with concomitant degradation of genomic RNA by RNase H. Newly synthesized (−) strand DNA is shown in blue; (<b>E</b>) (−) strand transfer; (<b>F</b>) (−) strand synthesis and concomitant degradation of genomic RNA by RNase H; (<b>G</b>) (+) strand synthesis initiates from the PPT and extends into tRNA. Nascent (+) strand DNA is shown in green; (<b>H</b>) PPT is re-cleaved from (+) strand DNA and tRNA is cleaved from (−) strand DNA by RNase H; (<b>I</b>) Second (+) strand DNA, indicated in blue, displaces first; (<b>J</b>) PPT is again cleaved; (<b>K</b>) Third (+) strand synthesis initiates, and displaces second (+) strand; (<b>L</b>) Second (+) strand transfers to 3′-end of (−) DNA and PPT is cleaved; (<b>M</b>) Synthesis of both (+) and (−) strands is completed.</p> "> Figure 2
<p>Structure of the asymmetric Ty3 RT homodimer in complex with its PPT-containing RNA/DNA hybrid. DNA and RNA strands of the cartoon representation are denoted in cyan and yellow, respectively. Subunit domains are color coded blue, red, green, and orange for fingers, palm, thumb, and RNase H, respectively, and the darker shading represents subunit A. Note the absence of a connection subdomain, a significant contrast between retroviral and LTR-retrotransposon RTs. Adapted from [<a href="#B37-viruses-09-00044" class="html-bibr">37</a>].</p> "> Figure 3
<p>Contacts between Ty3 RT subunits A and B and the PPT-containing RNA/DNA hybrid. Color coding is consistent with subdomain designation of <a href="#viruses-09-00044-f002" class="html-fig">Figure 2</a>, and DNA and RNA nucleotides are denoted in capital and small letters, respectively. The scissile PPT/U3 junction has been indicated, and base numbering is relative to substrate bound at the DNA polymerase active site Subunit B contacts are denoted “B” and circled. Parallel horizontal lines indicate van der Waals interactions. Diagonal and vertical lines indicate interactions mediated by the protein backbone (cyan) or side chains (black).</p> "> Figure 4
<p>Alignment of the DNA polymerase active sites of Ty3 (PDB ID 4OL8, REF) and HIV-1 RT (PDB ID:1RTD). Carbon atoms of select Ty3 RT residues are shown in red (palm) and blue (fingers), and those of HIV-1 residues are in grey. The two catalytic metal ions and incoming dTTP are shown in grey and dark grey, respectively. Both HIV-1 DNA strands are shown as a light blue ladder, and the RNA template and DNA primer bound by Ty3 RT are shown in magenta and marine, respectively. The 3′-terminal nucleotides in both DNA primer strands are shown in stick form, and the stick radius of the incoming dTTP has been slightly expanded for contrast. Adapted from [<a href="#B37-viruses-09-00044" class="html-bibr">37</a>].</p> "> Figure 5
<p>Phenotypic mixing strategy to determine the RNase H-competent Ty3 RT subunit. RNase H defective (D426N) and dimerization defective (R140A/R203A) mutant monomers are indicated in blue and grey, respectively. Notations d<sup>+</sup> and d<sup>−</sup> indicate a dimerization-competent and dimerization-incompetent subunit interface, while r<sup>+</sup> and r<sup>−</sup> denote RNase H-competent and RNase H-incompetent, respectively. Note that the d<sup>−</sup> mutant only prevents dimerization when in the A subunit position. When purified mutants are mixed, RNase H activity is only recovered in a reconstituted dimer whose subunit B contributes to RNase H activity.</p> "> Figure 6
<p>Alignment of RNase H active sites from Ty3 RT (PDB ID 4OL8, REF), <span class="html-italic">Bacillus halodurans</span> RNase H1 (PDB ID: 1ZB1, REF), and human RNase H1 (PDB ID: 2QK9, REF). Residue carbon atoms are shown in yellow, blue, and salmon, respectively. RNA strands from human and bacterial RNases H1 are shown in salmon and red, and two catalytic Mg<sup>++</sup> ions from the Bh-RNase H1 structure are depicted as green spheres. The attacking nucleophilic water is shown as a red sphere.</p> "> Figure 7
<p>(<b>A</b>) Model RNA/DNA hybrids to illustrate the specificity of cleavage at the Ty3 PPT/U3 junction. A hybrid containing the “all-RNA” strand, PPT/r, mimics selection of the PPT 3’-OH from the RNA/DNA replication mediate during (−) strand DNA synthesis, while a hybrid containing the RNA-DNA chimera, PPT/d, mimics release of the PPT 3’-OH from nascent DNA, an obligate step following initiation of (+) strand DNA synthesis; (<b>B</b>) experimental data. For both model substrates, the position of the PPT/U3 junction has been indicated. Adapted from [<a href="#B50-viruses-09-00044" class="html-bibr">50</a>].</p> "> Figure 8
<p>Modulation of Ty3 PPT cleavage by targeted insertion of non-polar pyrimidine isosteres. (<b>A</b>) Representation of an A:T base pair and its A:F counterpart; (<b>B</b>) Model Ty3 RNA/DNA hybrid and a summary of pyrimidine isostere mutagenesis. DNA and RNA strands are depicted in capital and small letters, respectively, and the scissile PPT/U3 junction is indicated. Base-pair numbering is relative to the PPT/U3 junction (i.e., the last base of the PPT is denoted −1). Sites of cleavage relative to the position of T-F modification in the DNA strand are indicated; (<b>C</b>) experimental data. WT, unmodified hybrid, indicating cleavage at the PPT/U3 junction. For additional panels, the position of T-F modification in the DNA strand are indicated, and the asterisk illustrates the relocated RNase H cleavage in response to these modifications. Adapted from [<a href="#B50-viruses-09-00044" class="html-bibr">50</a>,<a href="#B51-viruses-09-00044" class="html-bibr">51</a>].</p> ">
Abstract
:1. Introduction
2. Reverse Transcription Overview
2.1. Minus (−) Strand Initiation and tRNA-Retrotransposon RNA Interactions
2.2. Plus (+) Strand Initiation, (+) sssDNA Synthesis, and (+) Strand Transfer
2.3. Involvement of Ty3 Integrase
3. Ty3 RT Structural Organization and Biochemical Characterization
3.1. DNA Polymerase Active Site Residues
3.2. Thumb Subdomain Residues Contacting Nucleic Acid
3.3. A Single Subunit of the Ty3 RT Asymmetric Homodimer Contributes to RNase H Activity
3.4. RNase H Domain Structure
4. Structural Determinants of PPT Cleavage by Ty3 RT-Associated RNase H
5. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Telesnitsky, A.; Goff, S.P. Reverse transcriptase and the generation of retroviral DNA. In Retroviruses; Coffin, J.M., Hughes, S.H., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 121–160. [Google Scholar]
- Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 1970, 226, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Temin, H.M.; Mizutani, S. RNA-dependent DNA polymerase in virions of rous sarcoma virus. Nature 1970, 226, 1211–1213. [Google Scholar] [CrossRef] [PubMed]
- Le Grice, S.F. “In the beginning”: Initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry 2003, 42, 14349–14355. [Google Scholar] [CrossRef] [PubMed]
- Nowak, E.; Potrzebowski, W.; Konarev, P.V.; Rausch, J.W.; Bona, M.K.; Svergun, D.I.; Bujnicki, J.M.; Le Grice, S.F.; Nowotny, M. Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. 2013, 41, 3874–3887. [Google Scholar] [CrossRef] [PubMed]
- Kirshenboim, N.; Hayouka, Z.; Friedler, A.; Hizi, A. Expression and characterization of a novel reverse transcriptase of the LTR retrotransposon Tf1. Virology 2007, 366, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Benzair, A.B.; Rhodes-Feuillette, A.; Emanoil-Ravicovitch, R.; Peries, J. Reverse transcriptase from simian foamy virus serotype 1: Purification and characterization. J. Virol. 1982, 44, 720–724. [Google Scholar] [PubMed]
- Das, D.; Georgiadis, M.M. The crystal structure of the monomeric reverse transcriptase from moloney murine leukemia virus. Structure 2004, 12, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Perach, M.; Hizi, A. Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology 1999, 259, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Taube, R.; Loya, S.; Avidan, O.; Perach, M.; Hizi, A. Reverse transcriptase of mouse mammary tumour virus: Expression in bacteria, purification and biochemical characterization. Biochem. J. 1998, 329 Pt 3, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Sandmeyer, S.; Patterson, K.; Bilanchone, V. Ty3, a position-specific retrotransposon in budding yeast. Microbiol. Spectr. 2015, 3. MDNA3-0057-2014. [Google Scholar] [CrossRef] [PubMed]
- Friant, S.; Heyman, T.; Wilhelm, M.L.; Wilhelm, F.X. Extended interactions between the primer tRNAi(met) and genomic RNA of the yeast Ty1 retrotransposon. Nucleic Acids Res. 1996, 24, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Gabus, C.; Ficheux, D.; Rau, M.; Keith, G.; Sandmeyer, S.; Darlix, J.L. The yeast Ty3 retrotransposon contains a 5’-3’ bipartite primer-binding site and encodes nucleocapsid protein NCp9 functionally homologous to HIV-1 NCp7. EMBO J. 1998, 17, 4873–4880. [Google Scholar] [CrossRef] [PubMed]
- Ke, N.; Gao, X.; Keeney, J.B.; Boeke, J.D.; Voytas, D.F. The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription. RNA 1999, 5, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Cristofari, G.; Gabus, C.; Ficheux, D.; Bona, M.; Le Grice, S.F.; Darlix, J.L. Characterization of active reverse transcriptase and nucleoprotein complexes of the yeast retrotransposon Ty3 in vitro. J. Biol. Chem. 1999, 274, 36643–36648. [Google Scholar] [CrossRef] [PubMed]
- Friant, S.; Heyman, T.; Bystrom, A.S.; Wilhelm, M.; Wilhelm, F.X. Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(imet) primer are required for initiation of reverse transcription in vivo. Mol. Cell. Biol. 1998, 18, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Lanchy, J.M.; Keith, G.; Le Grice, S.F.; Ehresmann, B.; Ehresmann, C.; Marquet, R. Contacts between reverse transcriptase and the primer strand govern the transition from initiation to elongation of HIV-1 reverse transcription. J. Biol. Chem. 1998, 273, 24425–24432. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Harada, B.T.; Miller, J.T.; Le Grice, S.F.; Zhuang, X. Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat. Struct. Mol. Biol. 2010, 17, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Beerens, N.; Berkhout, B. The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription. J. Virol. 2002, 76, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Isel, C.; Westhof, E.; Massire, C.; Le Grice, S.F.; Ehresmann, B.; Ehresmann, C.; Marquet, R. Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO J. 1999, 18, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.T.; Ehresmann, B.; Hubscher, U.; Le Grice, S.F. A novel interaction of tRNA(Lys,3) with the feline immunodeficiency virus RNA genome governs initiation of minus strand DNA synthesis. J. Biol. Chem. 2001, 276, 27721–27730. [Google Scholar] [CrossRef] [PubMed]
- Aiyar, A.; Ge, Z.; Leis, J. A specific orientation of RNA secondary structures is required for initiation of reverse transcription. J. Virol. 1994, 68, 611–618. [Google Scholar] [PubMed]
- Kirchner, J.; Sandmeyer, S. Proteolytic processing of Ty3 proteins is required for transposition. J. Virol. 1993, 67, 19–28. [Google Scholar] [PubMed]
- Cristofari, G.; Ficheux, D.; Darlix, J.L. The gag-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. J. Biol. Chem. 2000, 275, 19210–19217. [Google Scholar] [CrossRef] [PubMed]
- Karst, S.M.; Rutz, M.L.; Menees, T.M. The yeast retrotransposons Ty1 and Ty3 require the RNA lariat debranching enzyme, Dbr1p, for efficient accumulation of reverse transcripts. Biochem. Biophys. Res. Commun. 2000, 268, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Lauermann, V.; Boeke, J.D. The primer tRNA sequence is not inherited during Ty1 retrotransposition. Proc. Natl. Acad. Sci. USA 1994, 91, 9847–9851. [Google Scholar] [CrossRef] [PubMed]
- Lauermann, V.; Boeke, J.D. Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons. EMBO J. 1997, 16, 6603–6612. [Google Scholar] [CrossRef] [PubMed]
- Pochart, P.; Agoutin, B.; Rousset, S.; Chanet, R.; Doroszkiewicz, V.; Heyman, T. Biochemical and electron microscope analyses of the DNA reverse transcripts present in the virus-like particles of the yeast transposon Ty1. Identification of a second origin of Ty1DNA plus strand synthesis. Nucleic Acids Res. 1993, 21, 3513–3520. [Google Scholar] [CrossRef] [PubMed]
- Nymark-McMahon, M.H.; Sandmeyer, S.B. Mutations in nonconserved domains of Ty3 integrase affect multiple stages of the ty3 life cycle. J. Virol. 1999, 73, 453–465. [Google Scholar] [PubMed]
- Nymark-McMahon, M.H.; Beliakova-Bethell, N.S.; Darlix, J.L.; Le Grice, S.F.; Sandmeyer, S.B. Ty3 integrase is required for initiation of reverse transcription. J. Virol. 2002, 76, 2804–2816. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M.; Wilhelm, F.X. Cooperation between reverse transcriptase and integrase during reverse transcription and formation of the preintegrative complex of Ty1. Eukaryot. Cell 2006, 5, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Le Grice, S.F.J. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J. Biol. Chem. 2012, 287, 40850–40857. [Google Scholar] [CrossRef] [PubMed]
- Mous, J.; Heimer, E.P.; Le Grice, S.F. Processing protease and reverse transcriptase from human immunodeficiency virus type I polyprotein in Escherichia coli. J. Virol. 1988, 62, 1433–1436. [Google Scholar] [PubMed]
- Kohlstaedt, L.A.; Wang, J.; Friedman, J.M.; Rice, P.A.; Steitz, T.A. Crystal Structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 1992, 256, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Malik, H.S.; Eickbush, T.H. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 2001, 11, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Rausch, J.W.; Grice, M.K.; Henrietta, M.; Nymark, M.; Miller, J.T.; Le Grice, S.F. Interaction of p55 reverse transcriptase from the Saccharomyces cerevisiae retrotransposon Ty3 with conformationally distinct nucleic acid duplexes. J. Biol. Chem. 2000, 275, 13879–13887. [Google Scholar] [CrossRef] [PubMed]
- Nowak, E.; Miller, J.T.; Bona, M.K.; Studnicka, J.; Szczepanowski, R.H.; Jurkowski, J.; Le Grice, S.F.; Nowotny, M. Ty3 reverse transcriptase complexed with an RNA-DNA hybrid shows structural and functional asymmetry. Nat. Struct. Mol. Biol. 2014, 21, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Sarafianos, S.G.; Das, K.; Tantillo, C.; Clark, A.D., Jr.; Ding, J.; Whitcomb, J.M.; Boyer, P.L.; Hughes, S.H.; Arnold, E. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J. 2001, 20, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Lapkouski, M.; Tian, L.; Miller, J.T.; Le Grice, S.F.; Yang, W. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat. Struct. Mol. Biol. 2013, 20, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Lapkouski, M.; Tian, L.; Miller, J.T.; Le Grice, S.F.; Yang, W. Reply to “Structural requirements for RNA degradation by HIV-1 reverse transcriptase”. Nat. Struct. Mol. Biol. 2013, 20, 1342–1343. [Google Scholar] [CrossRef] [PubMed]
- Bibillo, A.; Lener, D.; Klarmann, G.J.; Le Grice, S.F. Functional roles of carboxylate residues comprising the DNA polymerase active site triad of Ty3 reverse transcriptase. Nucleic Acids Res. 2005, 33, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, M.R.; Pelletier, H.; Kumar, A.; Wilson, S.H.; Kraut, J. Crystal structure of rat DNA polymerase beta: Evidence for a common polymerase mechanism. Science 1994, 264, 1930–1935. [Google Scholar] [CrossRef] [PubMed]
- Bibillo, A.; Lener, D.; Tewari, A.; Le Grice, S.F. Interaction of the Ty3 reverse transcriptase thumb subdomain with template-primer. J. Biol. Chem. 2005, 280, 30282–30290. [Google Scholar] [CrossRef] [PubMed]
- Koshkin, A.A.; Singh, S.K.; Nielsen, P.; Rajwanshi, V.K.; Kumar, R.; Meldgaard, M.; Olsen, C.E.; Wengel, J. LNA (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998, 54, 3607–3630. [Google Scholar] [CrossRef]
- Lener, D.; Budihas, S.R.; Le Grice, S.F. Mutating conserved residues in the ribonuclease H domain of Ty3 reverse transcriptase affects specialized cleavage events. J. Biol. Chem. 2002, 277, 26486–26495. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, M. Retroviral integrase superfamily: The structural perspective. EMBO Rep. 2009, 10, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, M.; Gaidamakov, S.A.; Crouch, R.J.; Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell 2005, 121, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Rausch, J.W.; Le Grice, S.F. Substituting a conserved residue of the ribonuclease H domain alters substrate hydrolysis by retroviral reverse transcriptase. J. Biol. Chem. 1997, 272, 8602–8610. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, M.; Gaidamakov, S.A.; Ghirlando, R.; Cerritelli, S.M.; Crouch, R.J.; Yang, W. Structure of human RNase H1 complexed with an RNA/DNA hybrid: Insight into HIV reverse transcription. Mol. Cell 2007, 28, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Lener, D.; Kvaratskhelia, M.; Le Grice, S.F. Nonpolar thymine isosteres in the Ty3 polypurine tract DNA template modulate processing and provide a model for its recognition by Ty3 reverse transcriptase. J. Biol. Chem. 2003, 278, 26526–26532. [Google Scholar] [CrossRef] [PubMed]
- Guckian, K.M.; Krugh, T.R.; Kool, E.T. Solution structure of a nonpolar, non-hydrogen-bonded base pair surrogate in DNA. J. Am. Chem. Soc. 2000, 122, 6841–6847. [Google Scholar] [CrossRef] [PubMed]
- Yi-Brunozzi, H.Y.; Brabazon, D.M.; Lener, D.; Le Grice, S.F.; Marino, J.P. A ribose sugar conformational switch in the LTR-retrotransposon Ty3 polypurine tract-containing RNA/DNA hybrid. J. Am. Chem. Soc. 2005, 127, 16344–16345. [Google Scholar] [CrossRef] [PubMed]
- Szyperski, T.; Gotte, M.; Billeter, M.; Perola, E.; Cellai, L.; Heumann, H.; Wuthrich, K. NMR structure of the chimeric hybrid duplex r(gcaguggc).R(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription. J. Biomol. NMR 1999, 13, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Rausch, J.W.; Qu, J.; Yi-Brunozzi, H.Y.; Kool, E.T.; Le Grice, S.F. Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection. Proc. Natl. Acad. Sci. USA 2003, 100, 11279–11284. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rausch, J.W.; Miller, J.T.; Le Grice, S.F.J. Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses 2017, 9, 44. https://doi.org/10.3390/v9030044
Rausch JW, Miller JT, Le Grice SFJ. Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses. 2017; 9(3):44. https://doi.org/10.3390/v9030044
Chicago/Turabian StyleRausch, Jason W., Jennifer T. Miller, and Stuart F. J. Le Grice. 2017. "Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3" Viruses 9, no. 3: 44. https://doi.org/10.3390/v9030044
APA StyleRausch, J. W., Miller, J. T., & Le Grice, S. F. J. (2017). Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses, 9(3), 44. https://doi.org/10.3390/v9030044