Expression and Purification of a PEDV-Neutralizing Antibody and Its Functional Verification
<p>The vector map of eukaryotic expression vectors. (<b>A</b>) pCI-anti-porcine epidemic diarrhea virus (PEDV)-VL mAb. (<b>B</b>) pCI-anti-PEDV-VH mAb.</p> "> Figure 2
<p>The design for in-vivo test distribution map. (<b>A</b>) The distribution of piglets in group A and group B. (<b>B</b>) The distribution of piglets in group A, group B, group C and group D. The combination of letters and numbers in the figure represents the piglet number in each group.</p> "> Figure 3
<p>Measurement of anti-PEDV mAb-2. (<b>A</b>) Enzyme-linked immunosorbent assay (ELISA) measurement of serum IgG titers of the four immunized mice. (<b>B</b>) ELISA measurement of IgG in the supernatants of 23 hybridoma clones, the serum of mouse-3 was used as a positive control. The numbers of positive hybridoma cells were 1, 2, 15, 18 and 21. Their ODs450 were 1.462, 1.532, 0.914, 0.326 and 0.162 respectively.</p> "> Figure 4
<p>The neutralization of PEDV by anti-PEDV mAb-2 from hybridoma supernatant and mouse ascites. (<b>A</b>–<b>C</b>) Neutralization of PEDV-CV777, PEDV-SDSX16 and PEDV-Aj1102 by anti-PEDV mAb-2 hybridoma supernatant. (<b>D</b>–<b>F</b>) Neutralization of PEDV-CV777, PEDV-SDSX16 and PEDV-Aj1102 by anti-PEDV mAb-2 mouse ascites. (<b>G</b>) Morphology of Vero cells after incubation for 72 h with anti-PEDV mAb-2 and PEDV. (<b>H</b>) Morphology of Vero cells after incubation for 72 h with PEDV only. The black arrow indicates the presence of syncytial bodies. Each column represents the average of triplicates, and each error bar indicates the standard deviations.</p> "> Figure 5
<p>Construction of eukaryotic expression vectors containing PEDV neutralizing antibody genes. (<b>A</b>) pCI-Neo-hTERT digested with <span class="html-italic">Nhe</span> I and <span class="html-italic">Sal</span> I, and pCI-Neo-hTERT uncut. Empty vector is 5.5 kb. (<b>B</b>) <span class="html-italic">Nhe</span> I and <span class="html-italic">Sal</span> I digestion of pCI-anti-PEDV-VL and pCI-anti-PEDV-VH., VL-Fc and VH-Fc are 2 kb. (<b>C</b>,<b>D</b>) Colony PCR products from cells transfected with pCI-anti-PEDV-VL and pCI-anti-PEDV-VH. VL-Fc is 844 bp and VH-Fc is 771 bp.</p> "> Figure 6
<p>HEK293 cells expressing anti-PEDV mAb-2 genes. (<b>A</b>) PCR identification of HEK293 cells expressing VL-Fc at 548 bp and VH-Fc at 410 bp from clones 5, 18, 21, 22, 24, 26, and 31. pCI-anti-PEDV-VL mAb-4 and pCI-anti-PEDV-VH mAb-12 were positive controls. (<b>B</b>–<b>J</b>) Neutralization of PEDV-CV777, PEDV-SDSX16 and PEDV-Aj1102 by supernatants from clones 24, 26, and 31.</p> "> Figure 6 Cont.
<p>HEK293 cells expressing anti-PEDV mAb-2 genes. (<b>A</b>) PCR identification of HEK293 cells expressing VL-Fc at 548 bp and VH-Fc at 410 bp from clones 5, 18, 21, 22, 24, 26, and 31. pCI-anti-PEDV-VL mAb-4 and pCI-anti-PEDV-VH mAb-12 were positive controls. (<b>B</b>–<b>J</b>) Neutralization of PEDV-CV777, PEDV-SDSX16 and PEDV-Aj1102 by supernatants from clones 24, 26, and 31.</p> "> Figure 7
<p>PEDV challenge. The feces, overall anatomical changes, and histopatholog of piglets. (<b>A</b>–<b>D</b>), group A piglets. (<b>E</b>–<b>H</b>), group B piglets. Black arrow indicates the intestinal villous epithelium and villous epithelial cells (<b>H</b>).</p> "> Figure 8
<p>Oral administration of anti-PEDV mAb-2 inhibits infection in piglets. (<b>A</b>–<b>C</b>) Symptom scores for diarrhea, appetite and mental state respectively. (<b>D</b>) Percent survival of the tested piglets.</p> "> Figure 9
<p>Neutralization of PEDV-CV777 (<b>A</b>), PEDV-SDSX16 (<b>B</b>), and PEDV-Aj1102 (<b>C</b>) by serum from piglets in groups A and B. Results are expressed as the mean values from triplicate wells. Data are shown as mean ± SEM (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement of Animal Usage
2.2. Cells, Virus, and Protein for Immunity
2.3. Generation of PEDV Virus Stocks
2.4. Preparation of PEDV S-Specific mAbs with Neutralizing Activity
2.5. Preparation of Ascitic Fluid in Perioneum and Antibody Purification
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Neutralization Test
2.8. Construction of Eukaryotic Expression Vectors Containing Anti-PEDV mAb-2 Genes
2.9. Cell Transfection and Selection
2.10. Oral Antibody Test in Piglets
2.11. Isolation of RNA and cDNA, and RT-PCR
2.12. Statistical Analysis
3. Results
3.1. Screening of PEDV S Protein-Positive Hybridomas
3.2. Neutralization Test
3.3. Highly Efficient Construction Of Recombinant Expression Vector
3.4. Generation of HEK293 Cells Expressing Anti-PEDV mAb-2 Genes
3.5. Oral Administration of Anti-PEDV mAb-2 Inhibits PEDV Infection in Piglets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J. 2015, 12, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Moon, H.; Kang, B. Porcine epidemic diarrhea: A review of current epidemiology and available vaccines. Clin. Exp. Vaccine Res. 2015, 4, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.; Saif, L.J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet. J. 2015, 204, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xu, Z.; Zhu, L. Prevalence and phylogenetic analysis of porcine deltacoronavirus in Sichuan province, China. Arch. Virol. 2020, 165, 2883–2889. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Cheng, I.C.; Chang, Y.C.; Tsai, P.S.; Lai, S.Y.; Huang, Y.L.; Jeng, C.R.; Pang, V.F.; Chang, H.W. Identification of Neutralizing Monoclonal Antibodies Targeting Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus Spike Protein. Sci. Rep. 2019, 9, 2529. [Google Scholar] [CrossRef] [PubMed]
- Wicht, O.; Li, W.; Willems, L.; Meuleman, T.J.; Wubbolts, R.W.; Van Kuppeveld, F.J.; Rottier, P.J.; Bosch, B.J. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. J. Virol. 2014, 88, 7952–7961. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, X.; Shi, D.; Shi, H.; Zhang, X.; Li, C.; Chi, Y.; Feng, L. Detection and molecular diversity of spike gene of porcine epidemic diarrhea virus in China. Viruses 2013, 5, 2601–2613. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.M.; Saif, L.J.; Marthaler, D.; Wang, Q. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Res. 2016, 226, 20–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Wang, S.; Chen, Z.; Yu, J.; Tang, R.; Qiu, W.; Zhao, L.; Liu, Y.; Guo, X.; He, H.; et al. Successive Passage In Vitro Led to Lower Virulence and Higher Titer of A Variant Porcine Epidemic Diarrhea Virus. Viruses 2020, 12, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, J.; Zeng, S.; Xiao, S.; Chen, H.; Fang, L. Complete genome sequence of porcine epidemic diarrhea virus strain AJ1102 isolated from a suckling piglet with acute diarrhea in China. J. Virol. 2012, 86, 10910–10911. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Huang, D.; Peng, Q.; Huang, T.; Chen, Y.; Zhang, T.; Nie, X.; He, H.; Wang, P.; Liu, Q.; et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013. PLoS ONE 2015, 10, e0120310. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, W.; De Esesarte, E.L.; Guo, H.; Van den Elzen, P.; Aarts, E.; Van den Born, E.; Rottier, P.J.M.; Bosch, B.J. Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, H.; Liu, Y.; Pan, Y.; Deng, F.; Song, Y.; Tang, X.; He, Q. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg. Infect. Dis. 2012, 18, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.; Park, J.E.; Jang, H.; Hyun, B.H.; Yang, D.G.; Shin, H.J. Evaluation of antibody response of killed and live vaccines against porcine epidemic diarrhea virus in a field study. Vet. Q. 2014, 34, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, X.; Jiang, X.; Jiang, Y.; Tang, L.; Xu, Y.; Qiao, X.; Min, L.; Wen, C.; Ma, G.; Li, Y. Oral Immunization against PEDV with Recombinant Lactobacillus casei Expressing Dendritic Cell-Targeting Peptide Fusing COE Protein of PEDV in Piglets. Viruses 2018, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Langel, S.N.; Paim, F.C.; Lager, K.M.; Vlasova, A.N.; Saif, L.J. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Res. 2016, 226, 93–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, L.; Weersink, A.; Poljak, Z.; De Lange, K.; Von Massow, M. An economic evaluation of intervention strategies for Porcine Epidemic Diarrhea (PED). Prev. Vet. Med. 2016, 134, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Moor, K.; Diard, M.; Sellin, M.E.; Felmy, B.; Wotzka, S.Y.; Toska, A.; Bakkeren, E.; Arnoldini, M.; Bansept, F.; Co, A.D.; et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 2017, 544, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Tian, Y.; Li, Y.; Xue, R.; Hu, L.; Zhang, D.; Sun, S.; Wang, G.; Chen, J.; Lan, Z.; et al. Recombinant Lactobacillus acidophilus expressing S1 and S2 domains of porcine epidemic diarrhea virus could improve the humoral and mucosal immune levels in mice and sows inoculated orally. Vet. Microbiol. 2020, 248, 108827. [Google Scholar] [CrossRef]
- Hofmann, M.; Wyler, R. Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV). Vet. Microbiol. 1989, 20, 131–142. [Google Scholar] [CrossRef]
- Tomita, M.; Tsumoto, K. Hybridoma technologies for antibody production. Immunotherapy 2011, 3, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Maleki, L.A.; Majidi, J.; Baradaran, B.; Abdolalizadeh, J.; Kazemi, T.; Maleki, A.A.; Sepehr, K.S. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice. Adv. Pharm. Bull. 2013, 3, 211–216. [Google Scholar]
- Yuan, L.; Ward, L.A.; Rosen, B.I.; To, T.L.; Saif, L.J. Systematic and intestinal antibody-secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease. J. Virol. 1996, 70, 3075–3083. [Google Scholar] [CrossRef] [Green Version]
- Crawford, K.; Lager, K.M.; Kulshreshtha, V.; Miller, L.C.; Faaberg, K.S. Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada. Virus Res. 2016, 226, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.Q.; Cai, R.J.; Chen, Y.Q.; Liang, P.S.; Chen, D.K.; Song, C.X. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg. Infect. Dis. 2012, 18, 161–163. [Google Scholar] [CrossRef]
- Cruz, D.J.; Kim, C.J.; Shin, H.J. The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus. Virus Res. 2008, 132, 192–196. [Google Scholar] [CrossRef]
- Hain, K.S.; Joshi, L.R.; Okda, F.; Nelson, J.; Singrey, A.; Lawson, S.; Martins, M.; Pillatzki, A.; Kutish, G.F.; Nelson, E.A.; et al. Immunogenicity of a recombinant parapoxvirus expressing the spike protein of Porcine epidemic diarrhea virus. J. Gen. Virol. 2016, 97, 2719–2731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Liao, X.; Huang, X.; Cao, S.; Wen, X.; Wen, Y.; Wu, R.; Liu, W. Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium. Virus Genes 2016, 52, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.J.; Kim, C.J.; Shin, H.J. Phage-displayed peptides having antigenic similarities with porcine epidemic diarrhea virus (PEDV) neutralizing epitopes. Virology 2006, 354, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godet, M.; Grosclaude, J.; Delmas, B.; Laude, H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J. Virol. 1994, 68, 8008–8016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okda, F.A.; Lawson, S.; Singrey, A.; Nelson, J.; Hain, K.S.; Joshi, L.R.; Christopher-Hennings, J.; Nelson, E.A.; Diel, D.G. The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes. Virology 2017, 509, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.B.; Feng, L.; Shi, H.Y.; Chen, J.F.; Liu, S.W.; Chen, H.Y.; Wang, Y.F. Spike protein region (aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virol. 2007, 51, 149–156. [Google Scholar]
- Liu, X.; Zhang, L.; Zhang, Q.; Zhou, P.; Fang, Y.; Zhao, D.; Feng, J.; Li, W.; Zhang, Y.; Wang, Y. Evaluation and comparison of immunogenicity and cross-protective efficacy of two inactivated cell culture-derived GIIa- and GIIb-genotype porcine epidemic diarrhea virus vaccines in suckling piglets. Vet. Microbiol. 2019, 230, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Bae, J.L.; Kang, T.J.; Kim, J.; Chung, G.H.; Lim, C.W.; Laude, H.; Yang, M.S.; Jang, Y.S. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol. Cells 2002, 14, 295–299. [Google Scholar] [PubMed]
- Lin, C.M.; Gao, X.; Oka, T.; Vlasova, A.N.; Esseili, M.A.; Wang, Q.; Saif, L.J. Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains. J. Virol. 2015, 89, 3332–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annamalai, T.; Lin, C.M.; Gao, X.; Liu, X.; Lu, Z.; Saif, L.J.; Wang, Q. Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain. Vet. Res. 2017, 48, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goede, D.; Murtaugh, M.P.; Nerem, J.; Yeske, P.; Rossow, K.; Morrison, R. Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain. Vet. Microbiol. 2015, 176, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Chattha, K.S.; Roth, J.A.; Saif, L.J. Strategies for design and application of enteric viral vaccines. Annu. Rev. Anim. Biosci. 2015, 3, 375–395. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Xu, Z.; Zhou, Q.; Li, W.; Wu, Y.; Du, Y.; Chen, L.; Zhang, Y.; Xue, C.; Cao, Y. Oral administration of coated PEDV-loaded microspheres elicited PEDV-specific immunity in weaned piglets. Vaccine 2018, 36, 6803–6809. [Google Scholar] [CrossRef] [PubMed]
- Rattanapisit, K.; Srijangwad, A.; Chuanasa, T.; Sukrong, S.; Tantituvanont, A.; Mason, H.S.; Nilubol, D.; Phoolcharoen, W. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa. Planta Med. 2017, 83, 1412–1419. [Google Scholar] [CrossRef]
Observation Projects | Evaluation Criteria | Score |
---|---|---|
A. Diarrhoea | Normal | 1 |
Fecal softening | 2 | |
Soft stool with mild watery diarrhea | 3 | |
Severe watery diarrhoea | 4 | |
B. Appetite | Normal | 1 |
Reduced appetite | 2 | |
Poor appetite | 3 | |
No appetite | 4 | |
C. Mental state | Normal | 1 |
Lethargic | 2 | |
Often lying down and occasionally stand | 3 | |
Barely breathing | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Hao, H.; Li, M.; Niu, J.; Hu, Y.; Zhao, X.; Li, Q. Expression and Purification of a PEDV-Neutralizing Antibody and Its Functional Verification. Viruses 2021, 13, 472. https://doi.org/10.3390/v13030472
Shi W, Hao H, Li M, Niu J, Hu Y, Zhao X, Li Q. Expression and Purification of a PEDV-Neutralizing Antibody and Its Functional Verification. Viruses. 2021; 13(3):472. https://doi.org/10.3390/v13030472
Chicago/Turabian StyleShi, Wenshu, Haiyang Hao, Mengran Li, Jianqin Niu, Yaning Hu, Xingbo Zhao, and Qiuyan Li. 2021. "Expression and Purification of a PEDV-Neutralizing Antibody and Its Functional Verification" Viruses 13, no. 3: 472. https://doi.org/10.3390/v13030472
APA StyleShi, W., Hao, H., Li, M., Niu, J., Hu, Y., Zhao, X., & Li, Q. (2021). Expression and Purification of a PEDV-Neutralizing Antibody and Its Functional Verification. Viruses, 13(3), 472. https://doi.org/10.3390/v13030472