Mechanical Metamaterials on the Way from Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability
"> Figure 1
<p>Overview of different metamaterial classes according to the modified properties of the material.</p> "> Figure 2
<p>Design space of mechanical metamaterials: parameters originating from material and fabrication, unit cell design and multi unit cell level architecture.</p> "> Figure 3
<p>Overview of different unit cells which will be challenging to manufacture but propose very interesting properties for mechanical metamaterials: (<b>a</b>) basic bow tie [<a href="#B16-materials-13-03605" class="html-bibr">16</a>], (<b>b</b>): honeycomb [<a href="#B3-materials-13-03605" class="html-bibr">3</a>], (<b>c</b>): auxetic bow tie [<a href="#B2-materials-13-03605" class="html-bibr">2</a>], (<b>d</b>): kagome based unit cell [<a href="#B3-materials-13-03605" class="html-bibr">3</a>], (<b>e</b>–<b>h</b>): bucklicrystals with differing amounts of holes arranged body centered cubic (BCC) or face centered cubic (FCC) [<a href="#B57-materials-13-03605" class="html-bibr">57</a>]: (<b>e</b>) 6-hole BCC, (<b>f</b>): 12-hole BCC, (<b>g</b>): 24-hole BCC, (<b>h</b>): 24-hole FCC. Figures are reproduced and adapted with permission from John Wiley and Sons [<a href="#B2-materials-13-03605" class="html-bibr">2</a>,<a href="#B3-materials-13-03605" class="html-bibr">3</a>,<a href="#B16-materials-13-03605" class="html-bibr">16</a>,<a href="#B57-materials-13-03605" class="html-bibr">57</a>].</p> "> Figure 4
<p>Examples of simulations as tool for topological and deformation optimization of metamaterial unit cells. (<b>a</b>) Simulation of Van Mises stresses in octet-truss unit cells under different strains (left) and stress distribution within the octet-truss at 1% strain (right) [<a href="#B78-materials-13-03605" class="html-bibr">78</a>]; (<b>b</b>) Simulation of Van Mieses stress in unit cells showing deformation and collapse behavior [<a href="#B41-materials-13-03605" class="html-bibr">41</a>]; (<b>c</b>) Simulation of elastic energy of a unit cell with bi-stable behavior under compression [<a href="#B2-materials-13-03605" class="html-bibr">2</a>]; (<b>d</b>) Experiments and simulation of the stress-strain diagram of a sequentially snapping metamaterial [<a href="#B55-materials-13-03605" class="html-bibr">55</a>]; (<b>e</b>) Experiment and simulation of a metamaterial under compression [<a href="#B79-materials-13-03605" class="html-bibr">79</a>]. Figures are reproduced and adapted with permission from John Wiley and Sons [<a href="#B2-materials-13-03605" class="html-bibr">2</a>,<a href="#B41-materials-13-03605" class="html-bibr">41</a>,<a href="#B55-materials-13-03605" class="html-bibr">55</a>,<a href="#B78-materials-13-03605" class="html-bibr">78</a>] or are published under a Creative Common Open Access License [<a href="#B79-materials-13-03605" class="html-bibr">79</a>].</p> "> Figure 5
<p>Examples of workflows for automated optimization of metamaterial systems. (<b>a</b>) Design of programmable inflatable actuators [<a href="#B80-materials-13-03605" class="html-bibr">80</a>]; (<b>b</b>) optimization of auxetic material based on deep-learning [<a href="#B81-materials-13-03605" class="html-bibr">81</a>]. Figures are reproduced and adapted with permission from John Wiley and Sons [<a href="#B80-materials-13-03605" class="html-bibr">80</a>,<a href="#B81-materials-13-03605" class="html-bibr">81</a>].</p> "> Figure 6
<p>Key aspects to enable metamaterials for industrial applications: design for reliability.</p> ">
Abstract
:1. Introduction
2. Current Design Space for Mechanical Metamaterials
2.1. Choice of Materials, Manufacturing Process and Manufacturing Parameters
2.2. Unit Cells: Geometry and Parametrization
2.3. Unit Cell Scaling Effects: Size, Connections and Distribution
2.4. Manufacturing Defects
- -
- redesign of the system and its unit cells to enable large scale production
- -
- development of design tools to simplify customization of metamaterials
- -
- implementation of characterization methods to evaluate the quality of manufactured metamaterials
- -
- validation of techniques and processes for predictive maintenance during the life-cycle
- -
- design rules to improve resilience of metamaterials and models for life-time prediction.
3. The Role of Simulation in Understanding, Optimizing and Scaling Mechanical Metamaterials
3.1. Optimization of Metamaterials
3.2. Optimization of Metamaterials Systems
3.3. Product Design for Applications
4. The Role of Experimental Investigations in Understanding and Scaling Mechanical Metamaterials
4.1. Experimental Mechanics Methods
4.2. Non-Destructive Characterization
4.3. Scalable Characterization Methods: Resilience Is Key
5. What Is Missing for the Deployment of Mechanical Metamaterials to Technical Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bertoldi, K.; Vitelli, V.; Christensen, J.; van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2017, 523, 2. [Google Scholar] [CrossRef] [Green Version]
- Berwind, M.F.; Kamas, A.; Eberl, C.; Hierarchical, A. Programmable Mechanical Metamaterial Unit Cell Showing Metastable Shape Memory. Adv. Eng. Mater. 2018, 20, 1800771. [Google Scholar] [CrossRef]
- Restrepo, D.; Mankame, N.D.; Zavattieri, P.D. Programmable materials based on periodic cellular solids. Part I: Experiments. Int. J. Solids Struct. 2016, 100–101, 485–504. [Google Scholar] [CrossRef]
- Shu, L.; Liang, R.; Yu, Y.; Tian, T.; Rao, Z.; Wang, Y. Unique elastic, dielectric and piezoelectric properties of micro-architected metamaterials. J. Mater. Chem. C 2019, 7, 2758–2765. [Google Scholar] [CrossRef]
- Surjadi, J.U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N.X.; Lu, Y. Mechanical Metamaterials and Their Engineering Applications. Adv. Eng. Mater. 2019, 21, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Kadic, M.; Milton, G.W.; van Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198. [Google Scholar] [CrossRef]
- Berwind, M.F.; Hashibon, A.; Fromm, A.; Gurr, M.; Burmeister, F.; Eberl, C. Rapidly prototyping biocompatible surfaces with designed wetting properties via photolithography and plasma polymerization. Microfluid. Nanofluid. 2017, 21, 17805. [Google Scholar] [CrossRef]
- Hahn, V.; Mayer, F.; Thiel, M.; Wegener, M. 3-D Laser Nanoprinting. Opt. Photonics News 2019, 30, 28. [Google Scholar] [CrossRef]
- Kadic, M.; Frenzel, T.; Wegener, M. When size matters. Nat. Phys. 2018, 14, 8. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, I.; Rho, J. Challenges in fabrication towards realization of practical metamaterials. Microelectron. Eng. 2016, 163, 7. [Google Scholar] [CrossRef]
- Walser, R.M. Electromagnetic Metamaterials. In Complex Mediums II: Beyond Linear Isotropic Dielectrics; Lakhtakia, A., Weiglhofer, W.S., Hodgkinson, I.J., Eds.; SPIE: Bellingham, WA, USA, 2001; p. 1. [Google Scholar]
- Walser, R.M. Metamaterials: What are They? What are They Good for? APS March Meeting Abstracts: Phoenix, AZ, USA, 2000. [Google Scholar]
- Munk, B.A. Metamaterials: Critique and Alternatives; John Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- He, J.; Lilley, C.M. Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 2008, 8, 1798–1802. [Google Scholar] [CrossRef] [PubMed]
- Shadrivov, I.V.; Lapine, M.; Kivshar, Y.S. (Eds.) Nonlinear, Tunable and Active Metamaterials; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Bückmann, T.; Stenger, N.; Kadic, M.; Kaschke, J.; Frölich, A.; Kennerknecht, T.; Eberl, C.; Thiel, M.; Wegener, M. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 2012, 24, 2710. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, R.; Leeflang, A.M.; Zadpoor, A.A. Additively manufactured metallic pentamode meta-materials. Appl. Phys. Lett. 2017, 110, 91905. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Cha, J.; Seo, K.; Kim, S.; Cha, Y.; Lee, H.; Park, J.; Choi, W. Temperature-responsive thermal metamaterials enabled by modular design of thermally tunable unit cells. Int. J. Heat Mass Transf. 2019, 130, 469. [Google Scholar] [CrossRef]
- Peralta, I.; Fachinotti, V.D.; Hostos, J.C.Á. A Brief Review on Thermal Metamaterials for Cloaking and Heat Flux Manipulation. Adv. Eng. Mater. 2020, 22, 1901034. [Google Scholar] [CrossRef]
- Sklan, S.R.; Li, B. Thermal metamaterials: Functions and prospects. Nat. Sci. Rev. 2018, 5, 138. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.-C. 2D metamaterial with in-plane positive and negative thermal expansion and thermal shearing based on interconnected alternating biomaterials. Mater. Res. Express 2019, 6, 115804. [Google Scholar] [CrossRef]
- Jopek, H.; Stręk, T. Thermoauxetic Behavior of Composite Structures. Materials 2018, 11, 294. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Belkin, M.A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870. [Google Scholar] [CrossRef] [Green Version]
- Soukoulis, C.M.; Wegener, M. Materials science. Optical metamaterials—More bulky and less lossy. Science 2010, 330, 1633. [Google Scholar] [CrossRef]
- Liu, N.; Giessen, H. Coupling effects in optical metamaterials. Angew. Chem. 2010, 49, 9838. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical cloaking with metamaterials. Nat. Photon 2007, 1, 224. [Google Scholar] [CrossRef] [Green Version]
- Walia, S.; Shah, C.M.; Gutruf, P.; Nili, H.; Chowdhury, D.R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2015, 2, 11303. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 2059. [Google Scholar] [CrossRef] [Green Version]
- Zangeneh-Nejad, F.; Fleury, R. Active times for acoustic metamaterials. Rev. Phys. 2019, 4, 100031. [Google Scholar] [CrossRef]
- Smoker, J.J. Design of Programmable Active Acoustic Metamaterial. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2012. [Google Scholar]
- Wu, X.; Su, Y.; Shi, J. Perspective of additive manufacturing for metamaterials development. Smart Mater. Struct. 2019, 28, 93001. [Google Scholar] [CrossRef]
- Meza, L.R.; Das, S.; Greer, J.R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014, 345, 1322. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Lee, H.; Weisgraber, T.H.; Shusteff, M.; DeOtte, J.; Duoss, E.B.; Kuntz, J.D.; Biener, M.M.; Ge, Q.; Jackson, J.A.; et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344, 1373. [Google Scholar] [CrossRef] [Green Version]
- Capolino, F. Theory and Phenomena of Metamaterials; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wu, W.; Hu, W.; Qian, G.; Liao, H.; Xu, X.; Berto, F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater. Des. 2019, 180, 107950. [Google Scholar] [CrossRef]
- Buriak, I.A.; Zhurba, V.O.; Vorobjov, G.S.; Kulizhko, V.R.; Kononov, O.K.; Rybalko, O. Metamaterials: Theory, Classification and Application Strategies (Review). J. Nano-Electron. Phys. 2016, 8, 04088-1. [Google Scholar] [CrossRef]
- Ren, X.; Das, R.; Tran, P.; Ngo, T.D.; Xie, Y.M. Auxetic metamaterials and structures: A review. Smart Mater. Struct. 2018, 27, 23001. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Pahlavani, H.; Zadpoor, A.A. Auxeticity and stiffness of random networks: Lessons for the rational design of 3D printed mechanical metamaterials. Appl. Phys. Lett. 2019, 115, 21901. [Google Scholar] [CrossRef]
- Coulais, C.; Kettenis, C.; van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 2018, 14, 40. [Google Scholar] [CrossRef]
- Karathanasopoulos, N.; Reis, F.D.; Hadjidoukas, P.; Ganghoffer, J.F. LatticeMech: A discrete mechanics code to compute the effective static properties of 2D metamaterial structures. SoftwareX 2020, 11, 100446. [Google Scholar] [CrossRef]
- El-Helou, C.; Harne, R.L. Exploiting Functionally Graded Elastomeric Materials to Program Collapse and Mechanical Properties. Adv. Eng. Mater. 2019, 23, 1900807. [Google Scholar] [CrossRef]
- Frenzel, T.; Kadic, M.; Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 2017, 358, 1072. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xiao, J.; Yu, W.; Guo, Q.; Yang, J. Hierarchical metal/polymer metamaterials of tunable negative Poisson’s ratio fabricated by initiator-integrated 3D printing (i3DP). Nanotechnology 2018, 29, 505704. [Google Scholar] [CrossRef]
- Dykstra, D.M.J.; Busink, J.; Ennis, B.; Coulais, C. Viscoelastic Metamaterials. J. Appl. Mech. 2019, 86, 1038. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Schroer, A.; Schwaiger, R.; Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 2016, 15, 438. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R.; Farina, I.; Colangelo, F.; Feo, L.; Fraternali, F. Multi-Material Additive Manufacturing of Sustainable Innovative Materials and Structures. Polymers 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zheng, X. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson’s Ratios. Sci. Rep. 2018, 8, 9139. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Flanagan, L.; Dowling, L.; Bennett, G.J.; Rice, H.; Trimble, D. The Influence of Additive Manufacturing Processes on the Performance of a Periodic Acoustic Metamaterial. Int. J. Polym. Sci. 2019, 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- Mandache, C. Overview of non-destructive evaluation techniques for metal-based additive manufacturing. Mater. Sci. Technol. 2019, 35, 1007. [Google Scholar] [CrossRef]
- Yuan, S.; Chua, C.K.; Zhou, K. 3D-Printed Mechanical Metamaterials with High Energy Absorption. Adv. Mater. Technol. 2019, 4, 1800419. [Google Scholar] [CrossRef]
- Mullin, T.; Deschanel, S.; Bertoldi, K.; Boyce, M.C. Pattern transformation triggered by deformation. Phys. Rev. Lett. 2007, 99, 84301. [Google Scholar] [CrossRef] [Green Version]
- Ghaedizadeh, A.; Shen, J.; Ren, X.; Xie, Y.M. Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity. Materials 2016, 9, 54. [Google Scholar] [CrossRef]
- Mateos, A.J.; Huang, W.; Zhang, Y.-W.; Greer, J.R. Discrete-Continuum Duality of Architected Materials: Failure, Flaws, and Fracture. Adv. Funct. Mater. 2018, 84, 1806772. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.; Meza, L.R.; Greer, F.; Greer, J.R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 2013, 12, 893. [Google Scholar] [CrossRef] [Green Version]
- Rafsanjani, A.; Akbarzadeh, A.; Pasini, D. Snapping mechanical metamaterials under tension. Adv. Mater. 2015, 27, 5931. [Google Scholar] [CrossRef] [Green Version]
- Barchiesi, E.; Spagnuolo, M.; Placidi, L. Mechanical metamaterials: A state of the art. Math. Mech. Solids 2019, 24, 212. [Google Scholar] [CrossRef]
- Babaee, S.; Shim, J.; Weaver, J.C.; Chen, E.R.; Patel, N.; Bertoldi, K. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 2013, 25, 5044. [Google Scholar] [CrossRef] [PubMed]
- Gatt, R.; Mizzi, L.; Azzopardi, J.I.; Azzopardi, K.M.; Attard, D.; Casha, A.; Briffa, J.; Grima, J.N. Hierarchical auxetic mechanical metamaterials. Sci. Rep. 2015, 5, 8395. [Google Scholar] [CrossRef] [PubMed]
- Bilal, O.R.; Süsstrunk, R.; Daraio, C.; Huber, S.D. Intrinsically Polar Elastic Metamaterials. Adv. Mater. 2017, 29, 1700540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulais, C.; Teomy, E.; de Reus, K.; Shokef, Y.; van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 2016, 535, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, K.M.; Hu, Z.; Letcher, T. In-Plane Stiffness of Additively Manufactured Hierarchical Honeycomb Metamaterials with Defects. J. Manuf. Sci. Eng. 2018, 140, 1413. [Google Scholar] [CrossRef]
- Celli, P.; McMahan, C.; Ramirez, B.; Bauhofer, A.; Naify, C.; Hofmann, D.; Audoly, B.; Daraio, C. Shape-morphing architected sheets with non-periodic cut patterns. Soft Matter 2018, 14, 9744. [Google Scholar] [CrossRef] [Green Version]
- Silverberg, J.L.; Evans, A.A.; McLeod, L.; Hayward, R.C.; Hull, T.; Santangelo, C.D.; Cohen, I. Applied origami. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 2014, 345, 647. [Google Scholar] [CrossRef]
- Schenk, M.; Guest, S.D. Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. USA 2013, 110, 3276. [Google Scholar] [CrossRef] [Green Version]
- Zadpoor, A.A. Additively manufactured porous metallic biomaterials. J. Mater. Chem. B 2019, 7, 4088. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Krishnaraju, D.; Konjevod, G.; Yu, H.; Jiang, H. Origami based mechanical metamaterials. Sci. Rep. 2014, 4, 5979. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Wang, B.; Yao, K.; Zhu, S.; Chen, S.; Xu, P.; Wang, L.; Sun, Y. Novel multi-stable mechanical metamaterials for trapping energy through shear deformation. Int. J. Mech. Sci. 2019, 164, 105168. [Google Scholar] [CrossRef]
- Yang, H.; Ma, L. Multi-stable mechanical metamaterials with shape-reconfiguration and zero Poisson’s ratio. Mater. Des. 2018, 152, 181. [Google Scholar] [CrossRef]
- Slesarenko, V. Planar Mechanical Metamaterials with Embedded Permanent Magnets. Materials 2020, 13, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, M.-S.; Liu, C.; Todd, I.; Lertthanasarn, J. Damage-tolerant architected materials inspired by crystal microstructure. Nature 2019, 565, 305. [Google Scholar] [CrossRef] [PubMed]
- Bertoldi, K.; Reis, P.M.; Willshaw, S.; Mullin, T. Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 2010, 22, 361. [Google Scholar] [CrossRef] [Green Version]
- Strek, T.; Jopek, H.; Idczak, E.; Wojciechowski, K.W. Computational Modelling of Structures with Non-Intuitive Behaviour. Materials 2017, 10, 1386. [Google Scholar] [CrossRef] [Green Version]
- Grima, J.N.R. Caruana-Gauci, Mechanical metamaterials: Materials that push back. Nat. Mater. 2012, 11, 565. [Google Scholar] [CrossRef]
- Iniguez-Rabago, A.; Li, Y.; Overvelde, J.T.B. Exploring multistability in prismatic metamaterials through local actuation. Nat. Commun. 2019, 10, 5577. [Google Scholar] [CrossRef]
- Van der Giessen, E.; Schultz, P.A.; Bertin, N.; Bulatov, V.V.; Cai, W.; Csányi, G.; Foiles, S.M.; Geers, M.G.D.; González, C.; Hütter, M.; et al. Roadmap on multiscale materials modeling, Modelling Simul. Mater. Sci. Eng. 2020, 28, 43001. [Google Scholar]
- Shaw, L.A.; Sun, F.; Portela, C.M.; Barranco, R.I.; Greer, J.R.; Hopkins, J.B. Computationally efficient design of directionally compliant metamaterials. Nat. Commun. 2019, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Khandelwal, K. Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization. Comput. Methods Appl. Mech. Eng. 2019, 356, 490. [Google Scholar] [CrossRef] [Green Version]
- Al-Ketan, O.; Rezgui, R.; Rowshan, R.; Du, H.; Fang, N.X.; Al-Rub, R.K.A. Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies. Adv. Eng. Mater. 2018, 20, 1800029. [Google Scholar] [CrossRef]
- Cui, S.; Gong, B.; Ding, Q.; Sun, Y.; Ren, F.; Liu, X.; Yan, Q.; Yang, H.; Wang, X.; Song, B. Mechanical Metamaterials Foams with Tunable Negative Poisson’s Ratio for Enhanced Energy Absorption and Damage Resistance. Materials 2018, 11, 1869. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Forte, A.E.; Deng, B.; Rafsanjani, A.; Bertoldi, K. Kirigami-Inspired Inflatables with Programmable Shapes. Adv. Mater. 2020, e2001863. [Google Scholar] [CrossRef] [PubMed]
- Wilt, J.K.; Yang, C.; Gu, G.X. Accelerating Auxetic Metamaterial Design with Deep Learning. Adv. Eng. Mater. 2020, 22, 1901266. [Google Scholar] [CrossRef]
- Groeger, D.; Loo, E.C.; HotFlex, J.S. Post-print Customization of 3D Prints Using Embedded State Change, Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA; Kaye, J., Druin, A., Lampe, C., Morris, D., Hourcade, J.P., Eds.; ACM Press: New York, NY, USA, 2019; pp. 1–14. [Google Scholar]
- Ion, A.; Frohnhofen, J.; Wall, L.; Kovacs, R.; Alistar, M.; Lindsay, J.; Lopes, P.; Chen, H.-T.; Baudisch, P. Metamaterial Mechanisms. In Proceedings of the UIST ′16; Association for Computing Machinery: New York, NY, USA, 2016. [Google Scholar]
- Ion, A.; Wall, L.; Kovacs, R.; Baudisch, P. Digital Mechanical Metamaterials. Proc. CHI 2017, 2017, 977. [Google Scholar]
- Olberding, S.; Ortega, S.S.; Hildebrandt, K.; Foldio, J.S. Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology—UIST ′15; Latulipe, C., Hartmann, B., Grossman, T., Eds.; ACM Press: New York, NY, USA, 2015; pp. 223–232. [Google Scholar]
- Meza, L.R.; Zelhofer, A.J.; Clarke, N.; Mateos, A.J.; Kochmann, D.M.; Greer, J.R. Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. USA 2015, 112, 11502. [Google Scholar] [CrossRef] [Green Version]
- Piovarci, M.; Levin, D.I.W.; Rebello, J.; Chen, D.; Durikovic, R.; Pfister, H.; Matusik, W.; Didyk, P. An Interaction-Aware, Perceptual Model for Non-Linear Elastic Objects. ACM Trans. Graph. 2016, 35, 1–13. [Google Scholar] [CrossRef]
- Injeti, S.S.; Daraio, C.; Bhattacharya, K. Metamaterials with engineered failure load and stiffness. Proc. Natl. Acad. Sci. USA 2019, 116, 23960. [Google Scholar] [CrossRef] [Green Version]
- Simone, A.E.; Gibson, L.J. The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Mater. 1998, 46, 3929. [Google Scholar] [CrossRef]
- Li, K.; Gao, X.-L.; Subhash, G. Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids. Int. J. Solids Struct. 2005, 42, 1777. [Google Scholar] [CrossRef]
- Chen, C.; Lu, T.J.; Fleck, N.A. Effect of imperfections on the yielding of two-dimensional foams. J. Mech. Phys. Solids 1999, 47, 2235. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Janbaz, S.; Strano, M.; Vergani, L.; Zadpoor, A.A. Shape-matching soft mechanical metamaterials. Sci. Rep. 2018, 8, 965. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Geddes, J.B.; Yin, L.; Wiltzius, P.; Braun, P.V. X-ray computed tomography of holographically fabricated three-dimensional photonic crystals. Adv. Mater. 2012, 24, 2863. [Google Scholar] [CrossRef] [PubMed]
- Grimberg, R.; Udpa, L.; Savin, A.; Steigmann, R.; Andreescu, A.; Bruma, A.; Leitoiu, S.; Udpa, S.S. Metamaterials—A Challenge for Electromagnetic Nondestructive Evaluation. In Proceedings of the 10th European Conference on Non-Destructive Testing, Moscow, Russia, 7–11 June 2010. [Google Scholar]
- Amireddy, K.K.; Balasubramaniam, K.; Rajagopal, P. Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components. Appl. Phys. Lett. 2016, 108, 224101. [Google Scholar] [CrossRef]
- Rozina, S.; Andrei, D.N.; Nicoleta, I.; Catalin-Andrei, T.; Frantisek, N.; Stanislava, F.; Petrica, V.; Adriana, S. Nondestructive testing of advanced materials using sensors with metamaterials. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 12060. [Google Scholar] [CrossRef] [Green Version]
- Savin, A.; Bruma, A.; Steigmann, R.; Iftimie, N.; Faktorova, D. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation. Appl. Sci. 2015, 5, 1412. [Google Scholar] [CrossRef] [Green Version]
- Sakellariou, A.; Sawkins, T.J.; Senden, T.J.; Limaye, A. X-ray tomography for mesoscale physics applications. Phys. A Stat. Mech. Appl. 2004, 339, 152. [Google Scholar] [CrossRef]
- Paris, P.C.; Erdogan, F. A Critical Analysis of Crack Propagation Laws, Transactions of the ASME. J. Basic Eng. 1963, 528–534. [Google Scholar] [CrossRef]
- Paris, P.C.; Gomez, M.P.; Anderson, W.E. A Rational Analytic Theory of Fatigue. Trend Eng. 1961, 3, 9–14. [Google Scholar]
- Griffith, A.A. The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A 1921, 223, 163–198. [Google Scholar]
- Green, D.J. Transformation Toughening of Ceramics, 1st ed.; CRC Press: Milton, UK, 2018. [Google Scholar]
Type of Characterization | Material Type | Effects Studied | References |
---|---|---|---|
Compression tests | Shape memory polymers | Effects of different programming strains | [3] |
Acrylic Photoresin | Poisson’s ration, relaxation, recovery for varying holding times | [2] | |
Poisson’s ratio for differently structured honeycomb-based structures | [16] | ||
Polymer | Change in mechanical properties upon changing the size of the unit cell | [42] | |
Carbon nanotube reinforced PA12 | Impact of structural alterations and varying density | [50] | |
Silicone rubber | Impact of layer wise changing beam thickness | [41] | |
Polymer | Deformation of rotation-based systems and influence of number of unit cells | [39] | |
Tensile tests | Polymer | Deformation of rotation-based systems and influence of number of unit cells | [39] |
Three point bending tests | Shape memory polymers | Effects of different programming strains | [3] |
DIC or similar | Different polymers | Visual tracking of deformations | [2,3,16,39,42] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, S.C.L.; Hillen, L.; Eberl, C. Mechanical Metamaterials on the Way from Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability. Materials 2020, 13, 3605. https://doi.org/10.3390/ma13163605
Fischer SCL, Hillen L, Eberl C. Mechanical Metamaterials on the Way from Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability. Materials. 2020; 13(16):3605. https://doi.org/10.3390/ma13163605
Chicago/Turabian StyleFischer, Sarah C. L., Leonie Hillen, and Chris Eberl. 2020. "Mechanical Metamaterials on the Way from Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability" Materials 13, no. 16: 3605. https://doi.org/10.3390/ma13163605
APA StyleFischer, S. C. L., Hillen, L., & Eberl, C. (2020). Mechanical Metamaterials on the Way from Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability. Materials, 13(16), 3605. https://doi.org/10.3390/ma13163605