Proposed mechanical metamaterials that contract under tension and expand on compression represent a new approach to realize mechanical properties yet unknown in nature that could lead to applications in microelectromechanical systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Nicolaou, Z. G. & Motter, A. E. Nature Mater. 11, 608–613 (2012).
Baughman, R. H., Stafstrom, S., Cui, C. & Dantas, S. Science 279, 1522–1524 (1998).
Fortes, A. D., Suard, E. & Knight, K. S. Science 331, 742–746 (2011).
Lakes, R. S. & Wojciechowski, K. W. Phys. Status Solidi B 245, 545–551 (2008).
Gatt, R. & Grima, J. N. Phys. Status Solidi Rapid Res. Lett. 2, 236–238 (2008).
Grima, J. N., Attard, D., Caruana-Gauci, R. & Gatt, R. Scripta Materialia 65, 565–568 (2011).
Barnes, D. L., Miller, W., Evans, K. E. & Marmier, A. S. H. Mech. Mater. 46, 123–128 (2012).
Poźniak, A. A. et al. Rev. Adv. Mater. Sci. 23, 169–174 (2010).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Grima, J., Caruana-Gauci, R. Materials that push back. Nature Mater 11, 565–566 (2012). https://doi.org/10.1038/nmat3364
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3364