Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films
<p>Schematic diagram of the reactor used for the photocatalytic experiments. The arrows indicate the direction of the coolant.</p> "> Figure 2
<p>(<b>a</b>) Measured (black), Rietveld-refined (red), and difference between measured and refined data (blue) XRD patterns using the FullProf program for a BBFO2 thin film. The vertical bars (green) indicate the angular position of the allowed Bragg reflections. (<b>b</b>) The three-dimensional schematic representation of the BBFO2 unit cell with a trigonal structure in a hexagonal setting.</p> "> Figure 3
<p>Two-dimensional and three-dimensional Fourier maps along (x, y, 0), (0, y, z) and (x, 0, z) planes to visualize the electron density (ED) distribution for the BBFO2 film, measured in the number of electrons per cubic Angstrom, n/Å<sup>3</sup>.</p> "> Figure 4
<p>SEM top view of a representative BBFO2 thin film.</p> "> Figure 5
<p>Deconvoluted core level XPS spectra of (<b>a</b>) Bi 4f, (<b>b</b>) O 1s, (<b>c</b>) Fe 2p and (<b>d</b>) Ba 3d of a Ba-doped BFO thin film. The black curves represent the experimental data, while the blue curves are the corresponding fittings. Red, green and cyan curves are the fitted subpeaks.</p> "> Figure 6
<p>BBFO2 film absorbance spectrum. The inset shows Tauc’s plot for energy band gap determination.</p> "> Figure 7
<p>Photoluminescence spectrum of undoped (blue curve) and Ba-doped (red curve) BFO thin films.</p> "> Figure 8
<p>Absorption spectra before and after the photodegradation of (<b>a</b>) OG, (<b>b</b>) Violet, (<b>c</b>) RhB, (<b>d</b>) MO and (<b>e</b>) MB solutions in the presence of BBFO2 films before and after light exposure (6 h). Each plot reports the degradation percentual with respect to the non-exposure condition.</p> "> Figure 9
<p>Photocatalytic degradation of MO, OG, RhB, Violet and MB.</p> "> Figure 10
<p>Photocatalytic mechanism diagram of MO, OG, RhB, Violet and MB in Ba-doped BFO thin films, under natural sunlight.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase, Structural, and Morphological Characterization
3.2. Chemical Surface Composition Characterization
3.3. Optical Characterization
3.4. Photocatalysis Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Čebela, M.; Zagorac, D.; Batalović, K.; Radaković, J.; Stojadinović, B.; Spasojević, V.; Hercigonja, R. BiFeO3 Perovskites: A Multidisciplinary Approach to Multiferroics. Ceram. Int. 2017, 43, 1256–1264. [Google Scholar] [CrossRef]
- ZHANG, G.; CHENG, J.; Rui, C.; YU, S.; MENG, Z. Preparation of BiFeO3 Thin Films by Pulsed Laser Deposition Method. Trans. Nonferrous Met. Soc. China 2006, 16, s123–s125. [Google Scholar] [CrossRef]
- Pedro-García, F.; Sánchez-De Jesús, F.; Cortés-Escobedo, C.A.; Barba-Pingarrón, A.; Bolarín-Miró, A.M. Mechanically Assisted Synthesis of Multiferroic BiFeO3: Effect of Synthesis Parameters. J. Alloys Compd. 2017, 711, 77–84. [Google Scholar] [CrossRef]
- Abdelmadjid, K.; Gheorghiu, F.; Abderrahmane, B. Synthesis, Characterization, and Photocatalytic Activity of Ba-Doped BiFeO3 Thin Films. Materials 2022, 15, 961. [Google Scholar] [CrossRef] [PubMed]
- Layek, S.; Saha, S.; Verma, H.C. Preparation, Structural and Magnetic Studies on BiFe1−XCrXO3 (x 0.0, 0.05 and 0.1) Multiferroic Nanoparticles. AIP Adv. 2013, 3, 4799063. [Google Scholar] [CrossRef]
- Xie, J.; Feng, C.; Pan, X.; Liu, Y. Structure Analysis and Multiferroic Properties of Zr4+ Doped BiFeO3 Ceramics. Ceram. Int. 2014, 40, 703–706. [Google Scholar] [CrossRef]
- Naik, L.R.; Bammannavar, B.K. The Ferroelectric Dependent Magnetoelectricity in Composites. In Ferroelectrics-Characterization and Modeling; IntechOpen: London, UK, 2011; ISBN 9533074558. [Google Scholar]
- Fiebig, M. Revival of the Magnetoelectric Effect. J. Phys. D Appl. Phys. 2005, 38, R123. [Google Scholar] [CrossRef]
- Mane, P.V.; Shinde, N.B.; Mulla, I.M.; Koli, R.R.; Shelke, A.R.; Karanjkar, M.M.; Gosavi, S.R.; Deshpande, N.G. Bismuth Ferrite Thin Film as an Efficient Electrode for Photocatalytic Degradation of Methylene Blue Dye. Mater. Res. Express 2018, 6, 26426. [Google Scholar] [CrossRef]
- Tiron, V.; Jijie, R.; Matei, T.; Velicu, I.-L.; Gurlui, S.; Bulai, G. Piezo-Enhanced Photocatalytic Performance of Bismuth Ferrite-Based Thin Film for Organic Pollutants Degradation. Coatings 2023, 13, 1416. [Google Scholar] [CrossRef]
- Zargazi, M.; Entezari, M.H. A Novel Synthesis of Forest like BiFeO3 Thin Film: Photo-Electrochemical Studies and Its Application as a Photocatalyst for Phenol Degradation. Appl. Surf. Sci. 2019, 483, 793–802. [Google Scholar] [CrossRef]
- Kumar, A.; Varshney, D. Structural Transition and Enhanced Ferromagnetic Properties of La, Nd, Gd, and Dy-Doped BiFeO3 Ceramics. J. Electron. Mater. 2015, 44, 4354–4366. [Google Scholar] [CrossRef]
- Wang, X.W.; Liang, Y.F.; Sun, L.Y.; Guo, S.Q.; Venkatesh, K.S.; Wang, X.E.; Hou, M.Z.; Shang, S.Y.; Shang, J.; Hu, Y.C. Effects of Mn Doping on Ferroelectric, Ferromagnetic and Optical Properties of BiFeO3 Thin Films. Phys. B Condens. Matter 2020, 594, 412317. [Google Scholar] [CrossRef]
- Puhan, A.; Bhushan, B.; Kumar, V.; Panda, H.S.; Priyam, A.; Das, D.; Rout, D. Tailoring the Structural, Optical and Magnetic Properties of BiFeO3 Multiferroic Nanoparticles by Ba, Cr Co-Doping. Mater. Sci. Eng. B 2019, 241, 48–54. [Google Scholar] [CrossRef]
- Soltani, T.; Lee, B.-K. Improving heterogeneous photo-Fenton catalytic degradation of toluene under visible light irradiation through Ba-doping in BiFeO3 nanoparticles. J. Mol. Catal. A Chem. 2016, 425, 199–207. [Google Scholar] [CrossRef]
- Rodríguez, G.C.M.; Ochrombel, R.; Saruhan, B. Meta-stability and microstructure of the LaFe0.65Co0.3Pd0.05O3 perovskite compound prepared by a modified citrate route. J. Eur. Ceram. Soc. 2008, 28, 2611–2616. [Google Scholar]
- Kumari, S.; Ortega, N.; Kumar, A.; Pavunny, S.P.; Hubbard, J.W.; Rinaldi, C.; Srinivasan, G.; Scott, J.F.; Katiyar, R.S. Dielectric Anomalies Due to Grain Boundary Conduction in Chemically Substituted BiFeO3. J. Appl. Phys. 2015, 117, 114102. [Google Scholar] [CrossRef]
- Liqiang, J.; Xiaojun, S.; Baifu, X.; Baiqi, W.; Weimin, C.; Honggang, F. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 2004, 177, 3375–3382. [Google Scholar] [CrossRef]
- Li, J.; Cai, D.; Song, J.; Jin, D.; Yu, S.; Cheng, J. Synthesis and photocatalytic property of Ba-doped BiFeO3 nanoparticles. In Proceedings of the IEEE International Symposium on the Applications of Ferroelectrics (ISAF), Edinburgh, UK, 9–12 August 2010; pp. 1–4. [Google Scholar]
- Puhan, A.; Bhushan, B.; Kumar, V.; Panda, H.S.; Rout, D. Structural and Dielectric Properties of Ba, Cr Co-Doped BiFeO3 Multiferroic Nanoparticles. In Proceedings of the AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2018; Volume 1953. [Google Scholar]
- Khomchenko, V.A.; Kiselev, D.A.; Vieira, J.M.; Jian, L.; Kholkin, A.L.; Lopes, A.M.L.; Pogorelov, Y.G.; Araujo, J.P.; Maglione, M. Effect of Diamagnetic Ca, Sr, Pb, and Ba Substitution on the Crystal Structure and Multiferroic Properties of the BiFeO3 Perovskite. J. Appl. Phys. 2008, 103, 24105–24111. [Google Scholar] [CrossRef]
- Abdelmadjid, K.; Lukacs, V.A.; Gheorghiu, F. Dielectric and Magnetic Properties of (Pb, Ti) Co-Doped BiFeO3 Multiferroic Ceramics. Ceram. Int. 2023, 49, 32711–32718. [Google Scholar] [CrossRef]
- Xu, X.; Guoqiang, T.; Huijun, R.; Ao, X. Structural, Electric and Multiferroic Properties of Sm-Doped BiFeO3 Thin Films Prepared by the Sol–Gelprocess. Ceram. Int. 2013, 39, 6223–6228. [Google Scholar] [CrossRef]
- Berbenni, V.; Milanese, C.; Bruni, G.; Girella, A.; Marini, A. Mechanical Activation of the Solid-Phase Reaction between Bismuth Citrate and Iron (II) Oxalate Dihydrate to Yield BiFeO3. Ceram. Int. 2015, 41, 7216–7220. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. In Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 16–19 July 1990; Volume 127. [Google Scholar]
- Chudasama, D.K.; Shrimali, V.G.; Vaishnani, A.; Panchasara, C.M.; Raval, N.; Jambukiya, U.; Amouri, A.; Dhruv, D.; Joshi, A.D.; Solanki, P.S. Investigation on Structural, Optical and Electrical Properties of BiFeO3: ZnO Nano–Micro Particles–Matrix Composite. J. Alloys Compd. 2023, 960, 170771. [Google Scholar] [CrossRef]
- Pena, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2017. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, V.M. Die Gesetze Der Krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Rojas-George, G.; Concha-Balderrama, A.; Silva, J.; Fuentes, L.; Reyes-Rojas, A. Elucidating the Real Effect of Ba and Co Doping on the Magnetic and Optical Properties of BiFeO3. Ceram. Int. 2015, 41, 9140–9145. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-Ray Diffraction; Adison–Wesley Publ. Co.: London, UK, 1967; Volume 189. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Gonzales-Platas, J.; Rodriguez-Carvajal, J. GFourier Program. Incl. Full-Prof Suite Packag. 2007, 26, 12–19. [Google Scholar]
- Israel, S.; Saravanan, R.; Srinivasan, N.; Rajaram, R.K. High Resolution Electron Density Mapping for LiF and NaF by Maximum Entropy Method (MEM). J. Phys. Chem. Solids 2003, 64, 43–49. [Google Scholar] [CrossRef]
- Adhikary, G.D.; Khatua, D.K.; Senyshyn, A.; Ranjan, R. Long-Period Structural Modulation on the Global Length Scale as the Characteristic Feature of the Morphotropic Phase Boundaries in the Na0.5Bi0.5TiO3 Based Lead-Free Piezoelectrics. Acta Mater. 2019, 164, 749–760. [Google Scholar] [CrossRef]
- Gaikwad, V.M.; Brahma, M.; Borah, R.; Ravi, S. Structural, Optical and Magnetic Properties of Pr2FeCrO6 Nanoparticles. J. Solid State Chem. 2019, 278, 120903. [Google Scholar] [CrossRef]
- Gowri, G.; Saravanan, R.; Sasikumar, S.; IB, S.B. Exchange Bias Effect, Ferroelectric Property, Primary Bonding and Charge Density Analysis of La1−XCexFeO3 Multiferroics. Mater. Res. Bull. 2019, 118, 110512. [Google Scholar]
- Zhang, Z.; Wu, P.; Chen, L.; Wang, J. Systematic Variations in Structural and Electronic Properties of BiFeO3 by A-Site Substitution. Appl. Phys. Lett. 2010, 96, 12905–12908. [Google Scholar] [CrossRef]
- Kumar, A.; Varshney, D. Crystal Structure Refinement of Bi1− XNdxFeO3 Multiferroic by the Rietveld Method. Ceram. Int. 2012, 38, 3935–3942. [Google Scholar] [CrossRef]
- Pavunny, S.P.; Kumar, A.; Misra, P.; Scott, J.F.; Katiyar, R.S. Properties of the New Electronic Device Material La G DO3. Phys. Status Solidi 2014, 251, 131–139. [Google Scholar] [CrossRef]
- Sharma, S.; Reshi, H.A.; Siqueiros, J.M.; Herrera, O.R. Stability of Rhombohedral Structure and Improved Dielectric and Ferroelectric Properties of Ba, Na, Ti Doped BiFeO3 Solid Solutions. Ceram. Int. 2022, 48, 1805–1813. [Google Scholar] [CrossRef]
- Jahangeer, N.; Venkataraman, B.H. Tunable Physical Properties of Ba Doped BiFeO3 Multiferroic Nanoceramics for Capacitor and Memory Storage Devices. Mater. Today Proc. 2023, 72, 217–221. [Google Scholar] [CrossRef]
- Xu, X.; Lin, Y.; Li, P.; Shu, L.; Nan, C. Synthesis and Photocatalytic Behaviors of High Surface Area BiFeO3 Thin Films. J. Am. Ceram. Soc. 2011, 94, 2296–2299. [Google Scholar] [CrossRef]
- Ghorbani, M.; Sheibani, S.; Abdizadeh, H.; Golobostanfard, M.R. Boosting Solar Fuel Production of Bismuth Ferrite Thin Film by Incorporating Reduced Graphene Oxide. J. Alloys Compd. 2023, 936, 168300. [Google Scholar] [CrossRef]
- Hernandez Simon, Z.J.; Luna Lopez, J.A.; Mendoza Conde, G.O.; Hernandez De La Luz, A.D.; Moran Martínez, X.A.; Arciniega, J.J.G.; Moreno, M.M.; Flores Mendez, J.; Martínez Hernandez, H.P.; Flores, E. Electroluminescence in BiFeO3 and the role of defects. Mater. Sci. Semicond. Process. 2025, 188, 109168. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Matin, M.A.; Hakim, M.A.; Islam, M.F. Optical and Electrical Properties of Impurity-Less Multiferroic Bismuth Ferrite Nanoparticles. Mater. Sci. Eng. B 2022, 275, 115501. [Google Scholar] [CrossRef]
- Jebanisha, B.; Devi, V.N.M.; Varghese, J.; Aswathy, N.R. Magnetic and Dielectric Characteristics of RGO Modified BFO Nanoparticles Produced Using Sol-Gel via Auto-Combustion Method. Ceram. Int. 2024, 50, 36955–36963. [Google Scholar] [CrossRef]
- Ramezanalizadeh, H.; Manteghi, F. Design and Development of a Novel BiFeO3/CuWO4 Heterojunction with Enhanced Photocatalytic Performance for the Degradation of Organic Dyes. J. Photochem. Photobiol. A Chem. 2017, 338, 60–71. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Torres-Martínez, L.M.; Triana, C.; Lee, S.W. Ink-jet Bi2O3 films and powders for CO2 capture and self-cleaning applications. Thin Solid Films 2019, 677, 83–89. [Google Scholar] [CrossRef]
- Sellam, M.; Azizi, S.; Bouras, D.; Fellah, M.; Obrosov, A.; El-Hiti, G.A. Degradation of rhodamine B dye under visible and solar light on zinc oxide and nickel-doped zinc oxide thin films. Opt. Mater. 2024, 151, 115316. [Google Scholar] [CrossRef]
- Pedanekar, R.S.; Madake, S.B.; Narewadikar, N.A.; Mohite, S.V.; Patil, A.R.; Kumbhar, S.M.; Rajpure, K.Y. Photoelectrocatalytic degradation of Rhodamine B by spray deposited Bi2WO6 photoelectrode under solar radiation. Mater. Res. Bull. 2022, 147, 111639. [Google Scholar] [CrossRef]
- Shukla, b.K.; Rawat, S.; Gautam, M.K.; Bhandari, H.; Garg, S.; Singh, J. Photocatalytic Degradation of Orange G Dye by Using Bismuth Molybdate: Photocatalysis Optimization and Modeling via Definitive Screening Designs. Molecules 2022, 27, 2309. [Google Scholar] [CrossRef]
- Siddique, A.B.; Shaheen, M.A.; Shafeeq, S.; Abbas, A.; Zaman, T.; Ishaquee, M.Z.; Aslam, M. Optimization of photodegradation of crystal violet dye and biomedical applications of greenly synthesized NiO nanoparticles. Mater. Adv. 2025, 33, 11864–11880. [Google Scholar] [CrossRef]
- Algarni, T.S.; Abduh, N.A.Y.; Aouissi, A.; Al Kahtani, A. Photodegradation of methyl orange under solar irradiation on Fe-doped ZnO nanoparticles synthesized using wild olive leaf extract. Green Process. Synth. 2022, 11, 895–906. [Google Scholar] [CrossRef]
- Park, B.-G. Bismuth Ferrite Thin Film Coated on Polycarbonate Surface and Its Photocatalytic Properties in Visible Light. Mater. Lett. 2021, 285, 129006. [Google Scholar] [CrossRef]
- Boughelout, A.; Zebbar, N.; Macaluso, R.; Zohour, Z.; Bensouilah, A.; Zaffora, A.; Aida, M.S.; Kechouane, M.; Trari, M. 409 Rhodamine (B) Photocatalysis under Solar Light on High Crystalline ZnO Films Grown by Home-Made DC Sputtering. Optik 2018, 174, 77–85. [Google Scholar] [CrossRef]
- Boughelout, A.; Macaluso, R.; Kechouane, M.; Trari, M. Photocatalysis of Rhodamine B and Methyl Orange Degradation 424 under Solar Light on ZnO and Cu2O Thin Films. React. Kinet. Mech. Catal. 2020, 129, 1115–1130. [Google Scholar] [CrossRef]
- Pawar, K.K.; Chaudhary, L.S.; Mali, S.S.; Bhat, T.S.; Sheikh, A.D.; Hong, C.K.; Patil, P.S. In2O3 Nanocapsules for Rapid Photodegradation of Crystal Violet Dye under Sunlight. J. Colloid Interface Sci. 2020, 561, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, E.A.; Hegazey, R.M.; Kotp, Y.H.; Alharbi, A. Facile Synthesis of Fe2O3 Nanoparticles from Egyptian Insecticide Cans for Efficient Photocatalytic Degradation of Methylene Blue and Crystal Violet Dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117195. [Google Scholar] [CrossRef] [PubMed]
- Dhanalakshmi, M.; Prabavathi, S.L.; Saravanakumar, K.; Jones, B.F.; Muthuraj, V. Iridium Nanoparticles Anchored WO3 Nanocubes as an Efficient Photocatalyst for Removal of Refractory Contaminants (Crystal Violet and Methylene Blue). Chem. Phys. Lett. 2020, 745, 137285. [Google Scholar] [CrossRef]
- Soliman, A.M.; Elsuccary, S.A.A.; Ali, I.M.; Ayesh, A.I. Photocatalytic Activity of Transition Metal Ions-Loaded Activated Carbon: Degradation of Crystal Violet Dye under Solar Radiation. J. Water Process Eng. 2017, 17, 245–255. [Google Scholar] [CrossRef]
- Lin, X.; Ma, Y.; Wan, J.; Wang, Y.; Li, Y. Efficient Degradation of Orange G with Persulfate Activated by Recyclable FeMoO4. Chemosphere 2019, 214, 642–650. [Google Scholar] [CrossRef]
- Irfan, S.; Zhuanghao, Z.; Li, F.; Chen, Y.X.; Liang, G.X.; Luo, J.T.; Ping, F. Critical Review: Bismuth Ferrite as an Emerging Visible Light Active Nanostructured Photocatalyst. J. Mater. Res. Technol. 2019, 8, 6375–6389. [Google Scholar] [CrossRef]
Atom | Atom Position | Bond Angle/Bond Length | |||
---|---|---|---|---|---|
x | y | z | |||
Bi/Ba | 0.00000 | 0.00000 | 0.00000 | O–Fe–O | 78.856° |
Fe | 0.00000 | 0.00000 | 0.22701 | O–Bi/Ba–O | 116.671° |
O | 0.46262 | 0.05599 | 0.96664 | Bi/Ba–O | 2.4825 Å |
Fe–O | 1.8937 Å |
Molecular formula | Bi0.98Ba0.02FeO3 |
Diffractometer | PANalytical Almelo |
CuKa radiation | λ = 1.5405 Å |
Scan mode | θ–2θ |
2 h range | 20–70° |
Scan width-scan speed | 0.02, 2° min−1 |
Crystal system | Trigonal |
Space group | R3c |
Unit cell parameters | a = b = 5.579 Å c = 13.739 Å |
α = β = 90° γ = 120° | |
Volume | 370.33818 Å3 |
Crystallite size | 14.55 nm |
Tolerance factor | 0.892 |
Lattice strain | 0.554 (%) |
Profile function | Pseudo-Voigt |
FWHM parameters (U, V and W) | −0.244962, 0.109213, −0.166533 |
Pattern residual (Rp) | 33 |
Weighted pattern residual (Rwp) | 34.8 |
Expected residual (Rexp) | 10.88 |
Bragg factor (RB) | 19.25 |
Structural factor (RF) | 12.8 |
Goodness (χ2) | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boughelout, A.; Khiat, A.; Macaluso, R. Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films. Materials 2025, 18, 887. https://doi.org/10.3390/ma18040887
Boughelout A, Khiat A, Macaluso R. Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films. Materials. 2025; 18(4):887. https://doi.org/10.3390/ma18040887
Chicago/Turabian StyleBoughelout, Abderrahmane, Abdelmadjid Khiat, and Roberto Macaluso. 2025. "Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films" Materials 18, no. 4: 887. https://doi.org/10.3390/ma18040887
APA StyleBoughelout, A., Khiat, A., & Macaluso, R. (2025). Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films. Materials, 18(4), 887. https://doi.org/10.3390/ma18040887