Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering
<p>Relative density of the B<sub>4</sub>C–rGO composites with different rGO contents synthesized at different temperatures.</p> "> Figure 2
<p>XRD patterns of as-sintered B<sub>4</sub>C–rGO composites. (<b>a</b>) Samples with different rGO contents synthesized at 5 GPa/1400 °C/10 min; (<b>b</b>) B<sub>4</sub>C-2 <span class="html-italic">vol%</span> rGO composites synthesized at 1400–1600 °C.</p> "> Figure 3
<p>Hardness and fracture toughness profiles of B<sub>4</sub>C–rGO composites. (<b>a</b>–<b>c</b>) Influence of loading force and temperature on the Vickers hardness for samples with different rGO contents; the insets in (<b>a</b>–<b>c</b>) are optical microscopic images of the Vickers indentation at a 9.8 N load; (<b>d</b>) fracture toughness versus rGO content and temperature.</p> "> Figure 4
<p>SEM images of fracture surface for samples with different rGO contents ((<b>a</b>) 1 <span class="html-italic">vol%</span>, (<b>c</b>) 2 <span class="html-italic">vol%</span>, and (<b>e</b>) 3 <span class="html-italic">vol%</span>) synthesized at 5 GPa/1500 °C/10 min; (<b>b</b>,<b>d</b>,<b>f</b>) shown at a higher magnification.</p> "> Figure 5
<p>(<b>a</b>) SEM image of Vickers hardness indentation produced at a load of 9.8 N on the polished surface of B<sub>4</sub>C-2 <span class="html-italic">vol%</span> rGO sample synthesized at 5 GPa/1500 °C/10 min; (<b>b</b>) pull-out of rGO; (<b>c</b>) crack bridging and deflection; (<b>d</b>) EDS hierarchical image of element distribution in (<b>c</b>); (<b>e</b>) Raman spectra of B<sub>4</sub>C-2 <span class="html-italic">vol%</span> rGO sample, taken from a crack caused by Vickers indentation; (<b>f</b>) Raman spectra of un-sintered mixed powers.</p> "> Figure 6
<p>(<b>a</b>,<b>d</b>) TEM images of B<sub>4</sub>C-<span class="html-italic">2 vol%</span> rGO composite synthesized at 5 GPa/1500 °C/10 min; (<b>b</b>,<b>e</b>) HRTEM image of the square area in (<b>a</b>,<b>d</b>), respectively; (<b>c</b>,<b>f</b>) higher magnification of (<b>b</b>,<b>e</b>).</p> "> Figure 7
<p>C 1s XPS spectra of GO powders (<b>a</b>) and rGO after HPHT sintering at 5 GPa/1500 °C/10 min (<b>b</b>).</p> "> Figure 8
<p>Raman spectra of un-sintered mixed powers and B<sub>4</sub>C–rGO composites with different rGO contents synthesized at 5 GPa/1500 °C/10 min.</p> "> Figure 9
<p>Plot of the Vickers hardness and fracture toughness of this work in comparison with previous reports.</p> ">
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suri, A.K.; Subramanian, C.; Sonber, J.K.; Murthy, T.S.R.C. Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 2010, 55, 4–40. [Google Scholar] [CrossRef]
- Li, P.; Ma, M.; Wu, Y.; Zhang, X.; Chang, Y.; Zhuge, Z.; Sun, L.; Hu, W.; Yu, D.; Xu, B.; et al. Preparation of dense B4C ceramics by spark plasma sintering of high-purity nanoparticles. J. Eur. Ceram. Soc. 2021, 41, 3929–3936. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, X.; Li, Z.; Wang, W.; Zhang, J.; Fu, Z. Microstructures and mechanical properties of B4C-SiC intergranular/intragranular nanocomposite ceramics fabricated from B4C, Si, and graphite powders. J. Eur. Ceram. Soc. 2014, 34, 2153–2161. [Google Scholar] [CrossRef]
- Fan, J.; Shen, W.; Zhang, Z.; Fang, C.; Zhang, Y.; Chen, L.; Wang, Q.; Wan, B.; Jia, X. Properties of B4C-TiB2 ceramics prepared by spark plasma sintering*. Chin. Phys. B 2021, 30, 038105. [Google Scholar] [CrossRef]
- Zorzi, J.E.; Perottoni, C.A.; da Jornada, J.A.H. Hardness and wear resistance of B4C ceramics prepared with several additives. Mater. Lett. 2005, 59, 2932–2935. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049. [Google Scholar] [CrossRef]
- Sedlák, R.; Kovalčíková, A.; Balko, J.; Rutkowski, P.; Dubiel, A.; Zientara, D.; Girman, V.; Múdra, E.; Dusza, J. Effect of graphene platelets on tribological properties of boron carbide ceramic composites. Int. J. Refract. Met. Hard Mater. 2017, 65, 57–63. [Google Scholar] [CrossRef]
- Kovalčíková, A.; Sedlák, R.; Rutkowski, P.; Dusza, J. Mechanical properties of boron carbide+graphene platelet composites. Ceram. Int. 2016, 42, 2094–2098. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Zhang, H.B.; Peng, S.M. Electrically conductive graphene nanoplatelet/boron carbide composites with high hardness and toughness. Scr. Mater. 2016, 114, 98–102. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.M.; He, Q.L.; Wang, A.; Hu, L.; Fu, Z. Reduced-graphene-oxide-reinforced boron carbide ceramics fabricated by spark plasma sintering from powder mixtures obtained by heterogeneous co-precipitation. Ceram. Int. 2019, 45, 16496–16503. [Google Scholar] [CrossRef]
- Wang, A.Y.; He, Q.L.; Liu, C.; Hu, L.; Tian, T.; Zhang, J.; Zhang, Z.; Wang, H.; Fu, Z.; Wang, W.; et al. Enhanced toughness and strength of boron carbide ceramics with reduced graphene oxide fabricated by hot pressing. Ceram. Int. 2020, 46, 26511–26520. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Jiang, X.S.; Shi, J.L.; Luo, Y.; Tang, Y.; Wu, Q.; Luo, Z. Research on the interface properties and strengthening-toughening mechanism of nanocar-bon-toughened ceramic matrix composites. Nanotechnol. Rev. 2020, 9, 190–208. [Google Scholar] [CrossRef]
- Ahmad, I.; Yazdani, B.; Zhu, Y. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites. Nanomaterials 2015, 5, 90–114. [Google Scholar] [CrossRef]
- Ramirez, C.; Miranzo, P.; Belmonte, M.; Osendi, M.I.; Poza, P.; Vega-Diaz, S.M.; Terrones, M. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. J. Eur. Ceram. Soc. 2014, 34, 161–169. [Google Scholar] [CrossRef]
- Ju, B.Y.; Yu, Z.H.; Gou, H.S.; Yang, W.; Chen, G.; Wu, G. Coordinated matrix deformation induced ductility in multilayer graphene/ aluminum compo-sites. Carbon 2023, 202, 31–40. [Google Scholar] [CrossRef]
- Alexander, R.; Murthy, T.S.R.C.; Ravikanth, K.V.; Prakash, J.; Mahata, T.; Bakshi, S.R.; Krishnan, M.; Dasgupta, K. Effect of graphene nano-platelet reinforcement on the mechanical properties of hot pressed boron carbide based composite. Ceram. Int. 2018, 44, 9830–9838. [Google Scholar] [CrossRef]
- Chen, M.D.; Yin, Z.B.; Yuan, J.T.; Xu, W.; Ye, J.; Yan, S. Microstructure and properties of a graphene platelets toughened boron carbide composite ceramic by spark plasma sintering. Ceram. Int. 2018, 44, 15370–15377. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Luo, H.; Zhang, H.B.; Peng, S. Graphene nanoplatelet reinforced boron carbide composites with high electrical and thermal conductivity. J. Eur. Ceram. Soc. 2016, 36, 2679–2687. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Wang, H.K.; Tang, Y.; Wang, C.; Xu, C.; Wu, J.; Zhang, Z.; Wan, S.; Yang, H.; Qin, Y.; et al. Sintering pure polycrystalline boron carbide bulks with enhanced hardness and toughness under high pressure. Ceram. Int. 2023, 49, 28813–28823. [Google Scholar] [CrossRef]
- Liu, L.X.; Li, X.H.; He, Q.; Xu, L.; Cao, X.; Peng, X.; Meng, C.; Wang, W.; Zhu, W.; Wang, Y. Sintering dense boron carbide without grain growth under high pressure. J. Am. Ceram. Soc. 2018, 101, 1289–1297. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Zheng, J.C.; Su, M.Y.; Deng, M.; Shi, Y.; Chen, R.; Wang, Q.; Wang, Z.; Qi, J.; Li, R.; et al. Rapid densification and mechanical properties of ultra-high-pressure sintered transition metal carbide ceramics. Ceram. Int. 2023, 49, 39850–39861. [Google Scholar] [CrossRef]
- Sekimoto, Y.; Ohtani, R.; Nakamura, M.; Koinuma, M.; Lindoy, L.F.; Hayami, S. Tuneable pressure effects in graphene oxide layers. Sci. Rep. 2017, 7, 12159. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhang, Z.X.; Liu, Y.M.; Wang, A.; Tian, S.; Wang, W.; Wang, J. High-performance B4C-TiB2-SiC composites with tuneable properties fabricated by reactive hot pressing. J. Eur. Ceram. Soc. 2019, 39, 2995–3002. [Google Scholar] [CrossRef]
- Song, K.; Xu, Y.; Zhao, N.; Zhong, L.; Shang, Z.; Shen, L.; Wang, J. Evaluation of fracture toughness of tantalum carbide ceramic layer: A Vickers indentation method. J. Mater. Eng. Perform. 2016, 25, 3057–3064. [Google Scholar] [CrossRef]
- Lai, S.L.; Zang, J.H.; Shen, W.X.; Huang, G.; Fang, C.; Zhang, Y.; Chen, L.; Wang, Q.; Wan, B.; Jia, X.; et al. High hardness and high fracture toughness B4C-diamond ceramics obtained by high-pressure sintering. J. Eur. Ceram. Soc. 2023, 43, 3090–3095. [Google Scholar] [CrossRef]
- Sun, J.L.; Zhao, J.; Chen, Y.; Wang, L.; Yun, X.; Huang, Z. Macro-micro-nano multistage toughening in nano-laminated graphene ceramic composites. Mater. Today Phys. 2021, 22, 100595. [Google Scholar] [CrossRef]
- Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.M.; Guo, J.J.; Shinoda, Y.; Fujita, T.; Hirata, A.; Singh, J.P.; McCauley, J.W.; Chen, M.W. Enhanced Mechanical Properties of Nanocrystalline Boron Carbide by Nanoporosity and Interface Phases. Nat. Commun. 2012, 3, 1052. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Li, X.; Xu, L.; Cao, X.; Wang, Z.; Meng, C.; Zhu, W.; Ouyang, X. Enhancing Toughness in Boron Carbide with Reduced Graphene Oxide. J. Am. Ceram. Soc. 2015, 99, 257–264. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013, 39, 6215–6221. [Google Scholar] [CrossRef]
- Zhou, W.W.; Fan, Y.C.; Feng, X.P.; Kikuchi, K.; Nomura, N.; Kawasaki, A. Creation of individual few-layer graphene incorporated in an aluminum matrix. Compos. Part A Appl. Sci. Manuf. 2018, 112, 168–177. [Google Scholar] [CrossRef]
- Proctor, J.E.; Gregoryanz, E.; Novoselov, K.S.; Lotya, M.; Coleman, J.N.; Halsall, M.P. High-pressure Raman spectroscopy of graphene. Phys. Rev. B 2009, 80, 073408. [Google Scholar] [CrossRef]
- Alexander, R.; Ravikanth, K.V.; Srivastava, A.P.; Krishnan, M.; Dasgupta, K. Synergistic effect of carbon nanotubes on the properties of hot pressed boron carbide. Mater. Today Commun. 2018, 17, 450–457. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Luo, H.L.; Zhang, H.B.; Zhou, X.; Peng, S. Fabrication of toughened B4C composites with high electrical conductivity using MAX phase as a novel sintering aid. Ceram. Int. 2016, 42, 7347–7352. [Google Scholar] [CrossRef]
- Sun, L.; Li, P.H.; Ma, M.D.; Luo, K.; Liu, B.; Li, B.; Wu, Y.; Ying, P.; Zhang, Y.; Li, Z.; et al. Hard and tough ultrafine-grained B4C-cBN composites prepared by high-pressure sintering. J. Eur. Ceram. Soc. 2022, 42, 2015–2020. [Google Scholar] [CrossRef]
- Zong, H.; Zhang, C.P.; Ru, H.Q.; Huang, H.; Zhu, J.H.; Xu, H.B.; Xia, Q. Effect of Forming Pressure on Microstructure and Mechanical Properties of B4C-SiC-Si Ceramic Composites. Key Eng. Mater. 2018, 768, 152–158. [Google Scholar] [CrossRef]
- Ji, W.; Todd, R.I.; Wang, W.; Wang, H.; Zhang, J.; Fu, Z. Transient liquid phase spark plasma sintering of B4C-based ceramics using Ti-Al intermetallics as sintering aid. J. Eur. Ceram. Soc. 2016, 36, 2419–2426. [Google Scholar] [CrossRef]
- Wang, S.; Gao, S.; Xing, P.; Nie, D.; Yan, S.; Zhuang, Y. Pressureless liquid-phase sintering of B4C with MoSi2 as a sintering aid. Ceram. Int. 2019, 45, 13502–13508. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wu, X.S.; Liu, M.; Huang, Y.; Huang, Z. Microstructure and mechanical properties of B4C-TiB2-SiC composites fabricated by spark plasma sintering. Ceram. Int. 2020, 46, 3793–3800. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, C.J.; Li, Q.G.; Liu, Z.; Ran, S. B4C-TiB2 composites fabricated by hot pressing TiC-B mixtures: The effect of B excess. Ceram. Int. 2022, 48, 11981–11987. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, H.W.; Wang, Y.W.; An, R. Effects of carbon and silicon on microstructure and mechanical properties of pressureless sintered B4C/TiB2 composites. J. Alloys Compd. 2018, 772, 537–545. [Google Scholar] [CrossRef]
- Liu, Z.T.; Deng, X.G.; Li, J.M.; Sun, Y.; Ran, S. Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C-TiB2 composites. Ceram. Int. 2018, 44, 21415–21420. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, J.T.; Han, W.C.; Yin, Z. Microstructure and mechanical properties of B4C-TiB2 composite ceramic fabricated by reactive spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2020, 92, 105307. [Google Scholar] [CrossRef]
- Wang, A.Y.; Hu, L.X.; Guo, W.C.; Zhao, X.; Shi, Y.; He, Q.; Wang, W.; Wang, H.; Fu, Z. Synergistic effects of TiB2 and graphene nanoplatelets on the mechanical and electrical properties of B4C ceramic. J. Eur. Ceram. Soc. 2021, 42, 869–876. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, H.; Zhou, Y.B.; Sha, W.; Huang, Y.; Huang, Z. Enhancement mechanical properties of in-situ preparated B4C-based composites with small amount of (Ti3SiC2+Si). Ceram. Int. 2022, 48, 12006–12013. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.H.; Zhang, S.; Zhang, W. Mechanical properties and toughening mechanism of B4C–Al2O3 composite ceramics prepared by hot-press sintering. Ceram. Int. 2024, 50, 24499–24507. [Google Scholar] [CrossRef]
- Liao, Z.L.; He, Q.L.; Zhang, W.; Zhang, F.; Wang, W.; Fu, Z. B4C ceramics with increased dislocation density fabricated by reactive spark plasma sintering via carbon nanotubes–boron mixture. Ceram. Int. 2024, 50, 22443–22455. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, H.B.; Sun, S.H.; Xu, Y.; Zhang, C.; Ru, H. The reinforcement of reaction-bonded boron carbide via adjusting SiC morphology controlled by carbon sources. J. Eur. Ceram. Soc. 2024, 44, 116725. [Google Scholar] [CrossRef]
- Yaşar, Z.A.; Haber, R.A. The role of carbon addition on properties of boron carbide- silicon carbide composites. Ceram. Int. 2024, 50, 11451–11457. [Google Scholar] [CrossRef]
- Xiong, Z.G.; Zou, J.; Liu, J.J.; Ji, W.; Wang, W.; Fu, Z. Boron carbide based composites densified via Ti3SiC2 boronizing with excellent mechanical properties and amorphization tolerance. Compos. Part B Eng. 2024, 273, 111264. [Google Scholar] [CrossRef]
- Xia, Q.; Sun, S.H.; Ye, J.; Zhang, C.; Ru, H. Continuous SiC Skeleton-Reinforced Reaction-Bonded Boron Carbide Composites with High Flexural Strength. Materials 2023, 16, 5153. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.C.; Wang, Z.J. Residual stress effects on toughening of ultrafine-grained B4C-SiC ceramics. Mater. Today Commun. 2023, 36, 106649. [Google Scholar] [CrossRef]
- Zhao, J.; Fang, Z.Y.; Jin, X.; Wang, D.; Ding, X.; Ran, S. B4C-TiB2 composite with modified microstructure and enhanced properties from optimal size coupling of raw powders. J. Am. Ceram. Soc. 2023, 106, 4911–4920. [Google Scholar] [CrossRef]
- Yaşar, Z.A.; Celik, A.M.; Haber, R.A. Improving fracture toughness of B4C–SiC composites by TiB2 addition. Int. J. Refract. Met. Hard Mater. 2022, 108, 105930. [Google Scholar] [CrossRef]
- Zhang, W.W.; Cao, X.C.; Zhang, J.Y.; Zou, J.; Wang, W.; He, Q.; Ren, L.; Zhang, F.; Fu, Z. B4C-based hard and tough ceramics densified via spark plasma sintering using a novel Mg2Si sintering aid. Ceram. Int. 2022, 49, 145–153. [Google Scholar] [CrossRef]
- Yang, M.S.; Wang, L.J.; Li, H.Q.; Wang, S.; Wang, L.; Xing, P.; Zhuang, Y. Microstructure and mechanical properties of B4C matrix composites prepared via hot-pressing sintering with Pr6O11 as additive. Ceram. Int. 2021, 48, 7897–7904. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.S.; Li, H.Q.; Wang, L.; Wang, H.; Xing, P.; Zhuang, Y. High-performance B4C matrix composites fabricated from the B4C-Si-CeO2 system via reactive hot pressing. Ceram. Int. 2022, 48, 18811–18820. [Google Scholar] [CrossRef]
- Liu, G.Q.; Chen, S.X.; Zhao, Y.W.; Fu, Y.; Wang, Y. Effect of Ti and its compounds on the mechanical properties and microstructure of B4C ceramics fabricated via pressureless sintering. Ceram. Int. 2021, 47, 13756–13761. [Google Scholar] [CrossRef]
- Yao, W.K.; Yan, J.B.; Chen, P.A.; Li, X.; Zhu, Y.; Zhu, B. The improvement mechanism of mechanical properties of B4C ceramics by constructing core-shell powders. J. Am. Ceram. Soc. 2023, 106, 3163–3174. [Google Scholar] [CrossRef]
Elastic Constant (GPa) | 0 GPa | 1 GPa | 2 GPa | 3 GPa |
---|---|---|---|---|
Bulk modulus | 224.1 | 226.7 | 269.7 | 271.3 |
Shear modulus | 180.3 | 204.3 | 214.6 | 218.1 |
Young’s modulus | 426.7 | 484.0 | 509.0 | 516.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, D.; Rong, K.; Tao, Q.; Zhu, P. Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering. Materials 2024, 17, 5838. https://doi.org/10.3390/ma17235838
Wang X, Wang D, Rong K, Tao Q, Zhu P. Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering. Materials. 2024; 17(23):5838. https://doi.org/10.3390/ma17235838
Chicago/Turabian StyleWang, Xiaonan, Dianzhen Wang, Kaixuan Rong, Qiang Tao, and Pinwen Zhu. 2024. "Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering" Materials 17, no. 23: 5838. https://doi.org/10.3390/ma17235838
APA StyleWang, X., Wang, D., Rong, K., Tao, Q., & Zhu, P. (2024). Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering. Materials, 17(23), 5838. https://doi.org/10.3390/ma17235838