The Development of Processing Methods and Materials Used for Non-Pneumatic Tires: A Review
<p>Representative examples of NPTs: (<b>a</b>) a high-load-capacity NPT [<a href="#B10-materials-17-05660" class="html-bibr">10</a>]; (<b>b</b>) a mechanical elastic support type NPT [<a href="#B11-materials-17-05660" class="html-bibr">11</a>]; (<b>c</b>) NASA’s Superelastic Tire made of a shape memory alloy [<a href="#B11-materials-17-05660" class="html-bibr">11</a>]; (<b>d</b>) an Air Free Concept Tire [<a href="#B8-materials-17-05660" class="html-bibr">8</a>]; (<b>e</b>) a Michelin Tweel [<a href="#B12-materials-17-05660" class="html-bibr">12</a>]; (<b>f</b>) a Michelin UPTIS [<a href="#B7-materials-17-05660" class="html-bibr">7</a>]; (<b>g</b>) a passenger car NPT designed by Jihua Laboratory; (<b>h</b>) i-Flex [<a href="#B9-materials-17-05660" class="html-bibr">9</a>]; (<b>i</b>) honeycomb [<a href="#B13-materials-17-05660" class="html-bibr">13</a>]; (<b>j</b>) an NPT with a negative Poisson’s ratio [<a href="#B11-materials-17-05660" class="html-bibr">11</a>]; (<b>k</b>) a 3D-printed NPT [<a href="#B14-materials-17-05660" class="html-bibr">14</a>]; (<b>l</b>) a solid-type NPT.</p> "> Figure 2
<p>NPT: (<b>a</b>) physical sample of NPT; (<b>b</b>) composition structures of NPTs.</p> "> Figure 3
<p>Representative materials used for NPTs: (<b>a</b>,<b>b</b>) rubber of tread; (<b>c</b>) TPU particles; (<b>d</b>) nylon cord coated with resorcinol–formaldehyde–latex (RFL) solution; (<b>e</b>) steel cord; (<b>f</b>) aramid cord; (<b>g</b>) twisted rope of glass fibers.</p> "> Figure 4
<p>Main processing methods: (<b>a</b>) representative NPTs; (<b>b</b>) one-piece molding; (<b>c</b>) from the interior to the exterior; (<b>d</b>) from the exterior to the interior.</p> "> Figure 5
<p>Main processing methods: (<b>a</b>) a schematic diagram of compression molding; (<b>b</b>) the centrifugal casting process; (<b>c</b>) a schematic diagram of the injection molding process [<a href="#B90-materials-17-05660" class="html-bibr">90</a>]; (<b>d</b>) a schematic presentation of the SLS 3D printing process [<a href="#B91-materials-17-05660" class="html-bibr">91</a>]; (<b>e</b>) a schematic diagram of mechanical assembly [<a href="#B92-materials-17-05660" class="html-bibr">92</a>].</p> ">
Abstract
:1. Introduction
2. Concept and Classification of NPTs
2.1. Concept
2.2. Composition Structure
2.3. Classification
3. Materials for NPTs
3.1. Tread Combination Materials
3.1.1. Tread Materials
3.1.2. Skeleton Materials
3.2. Elastic Support Materials
3.3. Heterogeneous Bonding Adhesives
- The adhesion of skeleton materials with the tread:
- 2.
- The adhesion of the elastic support structure with the tread:
- 3.
- The adhesion of the elastic support structure with the rim:
4. Processing Methods for NPTs
4.1. Compression Molding
4.2. Casting
4.3. Injection Molding
4.4. Three-DimensionalPrinting
4.5. Mechanical Assembly
5. Conclusions and Prospects
- Material innovation and processing method improvement: The development of NPTs in the future will focus on material innovation and processing method improvement. Researchers will develop more wear-resistant, tear-resistant tread materials, fatigue-resistant elastic support materials, high-temperature dynamic bonding adhesives, and compression-resistant, fatigue-enduring skeleton materials in order to improve the durability and performance of tires. In the meantime, manufacturers will also seek to improve processing methods to promote the large-scale production of NPTs.
- Sustainability and environmental protection: The manufacture and use of NPTs may evolve in a more sustainable and environmentally friendly direction. The use of renewable materials, reducing the energy consumption and emissions of the production process, and improving the recycling efficiency of tires are likely to be the development trends of the future.
- The extensive application of additive manufacturing technology: Additive manufacturing technologies, such as 3D printing, are expected to play a greater role in the future processing of non-pneumatic tires, particularly in areas like customization, rapid prototyping, and small-batch production. These technologies enable the precise molding of tire structures and the easy customization of complex geometries, thereby accelerating the design, prototyping, and testing processes. Moreover, 3D printing reduces mold costs, leading to a shorter and more cost-effective development cycle for innovative tire designs.
- Intelligent production and automated control: To enhance production efficiency and reduce costs, the manufacturing processes for non-pneumatic tires will increasingly trend toward smart and automated systems. By utilizing intelligent manufacturing systems and sensing technologies, real-time monitoring and quality control of production processes can be achieved, improving efficiency and product consistency. In the future, machine learning algorithms may be integrated to optimize production parameters and processes, enabling automatic adjustments and improvements in manufacturing workflows, thereby further enhancing precision and efficiency in production.
- Comfort and shock absorption improvement: Manufacturers may pay more attention to ride comfort and shock absorption for future NPTs. Through more optimized material and structural design, vibration and noise can be reduced, providing a smoother driving experience.
- Intelligence and connectivity: With the intelligent development of the automotive industry, it is also possible for NPTs to relate to the intelligent system of the vehicle to monitor tire status, air pressure, and temperature in real time and provide relevant data and alerts. NPTs may perform better in different road conditions because they are not affected by changes in tire pressure. Future developments are likely to emphasize the versatility of tires, adapting to a variety of roads and environments.
- Customized design: Manufacturers may pay more attention to personalized and customized design in future NPTs to meet the needs and preferences of different users.
Funding
Acknowledgments
Conflicts of Interest
References
- Muda, M.; Jackowski, J.; Zdzisaw, H. Numerical research of selected features of the non-pneumatic tire. In Computational Technologies in Engineering (TKI’2018): Proceedings of the 15th Conference on Computational Technologies in Engineering, Jora Wielka, Poland, 16–19 October 2018; AIP Publishing: Melville, NY, USA, 2018. [Google Scholar]
- Martin, J.L.; Laumon, B. Tire blow-outs and motorway accidents. Traffic Inj. Prev. 2005, 6, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Dhrangdhariya, P.; Maiti, S. Effect of spoke design and material nonlinearity on non-pneumatic tire stiffness and durability performance. SAE Int. J. Passen Car 2021, 14, 117–135. [Google Scholar]
- Jackowski, J.; Wieczorek, M.; Muda, M. Energy consumption estimation of non-pneumatic tire and pneumatic tire during rolling. J. KONES 2018, 25, 159–168. [Google Scholar]
- Rhyne, T.B.; Cron, S.M. Development of a Non-Pneumatic Wheel. Tire Sci. Technol. 2006, 34, 222–225. [Google Scholar] [CrossRef]
- Ma, J.; Kolla, A.; Summers, J.D.; Joseph, P.F.; Blouin, V.Y.; Biggers, S. Numerical Simulation of New Generation Non-Pneumatic Tire (TWEEL™) and Sand. In Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, CA, USA, 30 August–2 September 2009. [Google Scholar]
- Michelin®Uptis the First Airless Mobility Solution for Passenger Vehicles. Available online: https://michelinmedia.com/michelin-uptis/ (accessed on 23 October 2023).
- Bridgestone Corporation Reveals Second Generation Air Free Concept (Non-Pneumatic) Tire. Available online: https://www.bridgestone.com/corporate/news/2013112101.html (accessed on 23 October 2023).
- Hankook Tire Exhibits Futuristic Airless Concept Tire i-Flex at Defense & Security Expo Korea 2022. Available online: https://www.hankooktire.com/global/en/company/media-list/media-detail.627246.html (accessed on 23 October 2023).
- Liu, W.; Liu, S.; Li, X.; Zhang, Q.; Wang, C.; Li, K. Static Stiffness Properties of High Load Capacity Non-Pneumatic Tires with Different Tread Structures. Lubricants 2023, 11, 180. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Z.; Shen, H.; Gong, J.; Xiao, Z. A comprehensive review on non-pneumatic tyre research. Mater. Des. 2023, 227, 111742. [Google Scholar] [CrossRef]
- Sidhu, C.S.; El-Sayegh, Z. Non-Pneumatic Tire Design and Modeling: An Overview of Research. J. Appl. Math. Phys. 2023, 11, 3529–3564. [Google Scholar] [CrossRef]
- Liu, B.; Xu, X. Mechanical behavior and mechanism investigation on the optimized and novel bio-inspired nonpneumatic composite tires. Rev. Adv. Mater. Sci. 2022, 61, 250–264. [Google Scholar] [CrossRef]
- At the Edge of the Future with Michelin’s Vision Concept. Available online: https://www.michelin.com/en/group/activities/tires/vision-concept (accessed on 14 July 2024).
- Airless Tires: The Next Big Thing, or an Empty Promise? Available online: https://www.topgear.com.ph/features/feature-articles/airless-tires-pros-and-cons-a413-20220619 (accessed on 23 October 2023).
- Chew, B.C.; Hafizuddin, H.; Sivaraos; Hamid, S.R.; Anand, T.J.S.; Chong, K.E.; Rajiani, I. The Next Wave of Air-Filled Tires. Int. J. Recent Technol. Eng. 2019, 8, 119–122. [Google Scholar]
- Ramachandran, M.; Bezgam, S.; Thompson, L.L.; Ziegert, J.C.; Rhyne, T.B.; Cron, S.M. On the Effects of Edge Scalloping for Collapsible Spokes in a Non-Pneumatic Wheel During High Speed Rolling. In Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, USA, 13–19 November 2009. [Google Scholar]
- Sardinha, M.; Fátima, V.M.; Ramos, T.R.; Reis, L. Design, properties, and applications of non-pneumatic tires: A review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 2277–2297. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, T.; Liu, X.; Wu, M.; Zhou, X.; Gao, F. Test and Simulation Study on the Static Load and Pure Longitudinal Slip Characteristics of Non-Pneumatic Tire. Machines 2023, 11, 86. [Google Scholar] [CrossRef]
- Xu, T.; Yang, J.; Zhu, L.; Gao, F. Lightweight Design Optimization of Nonpneumatic Tires under Radial-Stiffness Constraints. Machines 2022, 10, 889. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Zhang, Q. Influence of Spoke Parameters on Load Capacity of Non-Pneumatic Tires Using Orthogonal Study and Analysis of Variance. Int. J. Automot. Technol. 2024, 25, 235–247. [Google Scholar] [CrossRef]
- Ali, M.; Maarij, M.; Hussain, A. Design and structural analysis of non-pneumatic tyres for different structures of polyurethane spokes. J. Eng. Appl. Sci. 2022, 69, 38. [Google Scholar] [CrossRef]
- Zang, L.; Zhao, Y.; Sun, H.; Lin, F. Static Radical Stiffness and Contact Behavior of Nonpneumatic Mechanical Elastic Wheel. Trans. Nanjing Univ. Aeronaut. Astronaut. 2019, 36, 131–142. [Google Scholar]
- Deng, Y.; Zhao, Y.; Lin, F.; Zang, L. Influence of structure and material on the vibration modal characteristics of novel combined flexible road wheel. Def. Technol. 2022, 18, 1179–1189. [Google Scholar] [CrossRef]
- Anantharamaiah, B.; Fagerberg, L.; Sandberg, U.; Hansson, H.-E.; Garcia, J.J. Airless Tires in the LEON-T Project: How Can They Be Modelled? In SAE Technical Paper Series; SAE: Warrendale, PA, USA, 2024. [Google Scholar]
- Akshay, N.Z.; John, Z.; Lonny, T. Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling. SAE Int. J. Passen Car 2011, 4, 59–72. [Google Scholar]
- Zhang, Z.; Fu, H.; Zhao, Q.; Tan, D.; Yang, K. Pattern design and performance analysis of a flexible spoke bionic non-pneumatic tire. J. Braz. Soc. Mech. Sci. 2021, 43, 41. [Google Scholar] [CrossRef]
- Zang, L.; Wang, X.; Yan, P.L.; Zhao, Z. Structural design and characteristics of a non-pneumatic tire with honeycomb structure. Mech. Adv. Mater. Struc 2022, 29, 4066–4073. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, H.-F.; Zhou, H.-C.; Zheng, Z.; Wang, G.-L. Comparative study of static and dynamic characteristics of non-pneumatic tires with gradient honeycomb structure. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 366. [Google Scholar] [CrossRef]
- Sidhu, C.; El-Sayegh, Z. Comparative Analysis of Non-Pneumatic Tire Spoke Designs for Off-Road Applications: A Smoothed Particle Hydrodynamics Perspective. Geotechnics 2024, 4, 549–563. [Google Scholar] [CrossRef]
- Bijina, V.; Jandas, P.J.; Joseph, S.; Gopu, J.; Abhitha, K.; John, H. Recent trends in industrial and academic developments of green tyre technology. Polym. Bull. 2023, 80, 8215–8244. [Google Scholar] [CrossRef] [PubMed]
- Jafry, A.T.; Naveed, A.; Saqib, M.A.; Azeem, M.B. Parametric analysis of various design factors on characteristic performance of Non-Pneumatic Tyres. In MATEC Web of Conferences; EDP Sciences: Hulis, France, 2024; Volume 398. [Google Scholar]
- Jackowski, J.; Żmuda, M.; Wieczorek, M. Comparative analysis of small size non-pneumatic tires and pneumatic tires—Radial stiffness and hysteresis, selected parameters of the contact patch. Eksploat. I Niezawodn.—Maint. Reliab. 2023, 25, 167362. [Google Scholar] [CrossRef]
- Shuai, Z.; Gao, S.; Yu, Y.; Zhao, X.; Yang, W.; Song, Z.; Zheng, Y.; Yuan, J.; Jiao, Z. Characteristic study and design factor analysis of a novel non-pneumatic tyre with V-shaped spokes. Mater. Des. 2024, 238, 112681. [Google Scholar] [CrossRef]
- Ni, S.; Fu, H.; Li, X.; Chen, K.; Zhang, J. Design and simulation of a new type of composite flexible-spoke non-pneumatic tire. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 310. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Y.; Chen, K.; Ni, S.; Yang, B.; Huo, R. A fatigue life prediction model of flexible spoke non-pneumatic tires. Eng. Fract. Mech. 2024, 295, 109795. [Google Scholar] [CrossRef]
- Rugsaj, R.; Suvanjumrat, C. Revolutionizing tire engineering: Finite element analysis and design of an X-shaped spoke structure for non-pneumatic military tires. Alex. Eng. J. 2024, 99, 303–318. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, H.S.; Kamath, S.S.; Hou, X.; Choi, J.W.; Park, S.H. TPMS-based auxetic structure for high-performance airless tires with variable stiffness depending on deformation. Sci. Rep. 2024, 14, 11419. [Google Scholar] [CrossRef]
- De Beer, M.; Van Rensburg, Y.; Maina, J.W. Three-dimensional contact stresses of a slick solid rubber tyre on a rigid surface. J. S. Afr. Inst. Civ. Eng. 2021, 63, 2–13. [Google Scholar] [CrossRef]
- Nasruddin; Setianto, W.B.; Yohanes, H.; Atmaji, G.; Lanjar; Yanto, D.H.Y.; Wulandari, E.P.; Wiranata, A.; Ibrahim, B. Characterization of Natural Rubber, Styrene Butadiene Rubber, and Nitrile Butadiene Rubber Monomer Blend Composites Loaded with Zinc Stearate to Be Used in the Solid Tire Industry. Appl. Sci. 2023, 13, 1277. [Google Scholar] [CrossRef]
- He, H.; Liu, J.; Zhang, Y.; Han, X.; Mars, W.V.; Zhang, L.; Li, F. Heat Build-Up and Rolling Resistance Analysis of a Solid Tire: Experimental Observation and Numerical Simulation with Thermo-Mechanical Coupling Method. Polymers 2022, 14, 2210. [Google Scholar] [CrossRef] [PubMed]
- Designed for Mars. Ready for Earth. Available online: https://www.smarttirecompany.com/cycling (accessed on 23 October 2023).
- Fu, H.; Chen, X.; Zhao, Q.; Xiao, Z.; Liang, X. Fatigue life prediction and influencing factors analysis of mesh flexible spoke non-pneumatic tire. Adv. Mech. Eng. 2021, 13, 16878140211052454. [Google Scholar] [CrossRef]
- Fu, H.; Liang, X.; Chen, K.; Wang, Y.; Zhen, X. Study on key mechanical properties of the flexible spoke non-pneumatic tire considering thermo-mechanical coupling. Adv. Eng. Softw. 2022, 173, 103281. [Google Scholar] [CrossRef]
- Fu, H.; Liang, X.; Wang, Y.; Ku, L.; Xiao, Z. Thermal Mechanical Coupling Analysis of a Flexible Spoke Non-pneumatic Tire. Stroj. Vestn-J. Mech. E 2022, 68, 143–154. [Google Scholar] [CrossRef]
- Sim, J.; Hong, J.; Cho, I.; Lee, J. Analysis of Vertical Stiffness Characteristics Based on Spoke Shape of Non-Pneumatic Tire. Appl. Sci. 2021, 11, 2369. [Google Scholar] [CrossRef]
- Ganniari-Papageorgiou, E.; Chatzistergos, P.; Wang, X. The influence of the honeycomb design parameters on the mechanical behavior of non-pneumatic tires. Int. J. Appl. Mech. 2020, 2, 2050024. [Google Scholar] [CrossRef]
- Zheng, Z.; Rakheja, S.; Sedaghati, R. Cornering stiffness characteristics of honeycomb wheels: A parametric analysis using response surface method. Compos. Struct. 2022, 288, 115418. [Google Scholar] [CrossRef]
- Kiran, M.; Aswath, M.; Shishir, D.A.; Ponangi, B.R.; Bhanumurthy, R. Effect of Material Models on Rolling Resistance of Non-pneumatic Tires with Hexagonal Spokes. SAE Int. J. Commer. Veh. 2023, 16, 33–47. [Google Scholar] [CrossRef]
- Landi, D.; Vitali, S.; Germani, M. Environmental analysis of different end of life scenarios of tires textile fibers. Procedia Cirp 2016, 48, 508–513. [Google Scholar] [CrossRef]
- Murniati, R.; Gunawan, A.F.; Hidayat, A.S.; Roza, L.; Arti, D.K.; Indriasari; Amry, A.; Abdullah, M. Enhancing airless tire performance for military vehicles: Natural rubber compound with carbon black Fillers N220 and N550 with dynamic mechanical analysis approach. J. Polym. Res. 2024, 31, 137. [Google Scholar] [CrossRef]
- Lovison, V.M.H.; de Freitas, M.A.; Forte, M.M.C. Chemically modified soybean oils as plasticizers for silica-filled e-SBR/Br compounds for tire tread applications. J. Elastom. Plast. 2021, 53, 806–824. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Yu, X.B.; Ding, Y.Q.; Chen, X.J.; Yuan, Z.X.; Yang, X. Elucidation of segmental relaxations of silicafilled cispolybutadiene rubber composites. Polym. Eng. Sci. 2023, 63, 593–604. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Zhang, Y.; Pei, X.; Wang, T.; Wang, Q. Abrasion and Mixed Sliding–Rolling Properties of Polyisoprene-Based Tread Rubber. J. Macromol. Sci. B 2022, 61, 1024–1045. [Google Scholar] [CrossRef]
- Pongdhorn, S.O.; Krisda, S.; Chakrit, S.; Wenussarin, I.; Pram, Y.; Uthai, T. Effects of Blend Ratio and SBR Type on Properties of Carbon Black-Filled and Silica-Filled SBR/BR Tire Tread Compounds. Adv. Mate Sci. Eng. 2017, 2017, 1–8. [Google Scholar]
- Rehman, A.; Saeed, F.; Shuib, R.K. Characterisation and properties of polyisoprene (IR)/polybutadiene (BR) rubber blends-reinforced silanised silica nano-filler. J. Rubber Res. 2022, 25, 223–230. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Y.; Zhang, Z.; Wu, S. Effect of carbon black components on rolling mechanical properties of tread rubber material by using improved digital image correlation. Polym. Compos. 2023, 44, 5003–5017. [Google Scholar] [CrossRef]
- Shin, W.S.; Kwon, Y.R.; Kim, J.S.; Hong, S.J.; Kim, Y.J.; Lim, S.H.; Chang, Y.W.; Kim, D.H. Improved Silica Dispersibility in Silica-rubber Compounds for a Tire Tread by Using an Itaconic Acid-based Polymeric Dispersant. Fibers Polym. 2021, 22, 196–204. [Google Scholar] [CrossRef]
- Qin, X.; Wang, J.; Han, B.; Wang, B.; Mao, L.; Zhang, L. Novel Design of Eco-Friendly Super Elastomer Materials with Optimized Hard Segments Micro-Structure: Toward Next-Generation High-Performance Tires. Front. Chem. 2018, 6, 240. [Google Scholar] [CrossRef]
- Yang, Y.S.; Bae, J.G.; Park, C.G. Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing. Mater. Sci. Eng. A 2008, 488, 554–561. [Google Scholar] [CrossRef]
- Shilavant, R.; Samui, B.K.; Chanda, J.; Ghosh, P.; Mukhopadhyay, R.; Banerjee, S.S. A critical review on fractographic studies of steel cord and bead wire used in tyre reinforcement. Prog. Rubber Plast. Re 2023, 40, 98–117. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Zhao, J.; Shao, Z.; Wei, S.; Li, Q.; Wu, C. Interface construction and properties of polyester fibers reinforced acrylonitrile-butadiene rubber coordination composites. Polym. Bull. 2023, 81, 4677–4693. [Google Scholar] [CrossRef]
- Mahdavipour, Z.; Karimi, M.; Hoseini, S.A. Study of thermomechanical properties of hybrid tire cord. Polym. Adv. Technol. 2020, 31, 2250–2258. [Google Scholar] [CrossRef]
- Gao, H.T.; Liu, X.H.; Chen, J.Q.; Qi, J.L.; Wang, Y.B.; Ai, Z.B. Preparation of glass-ceramics with low density and high strength using blast furnace slag, glass fiber and water glass. Ceram. Int. 2017, 44, 6044–6053. [Google Scholar] [CrossRef]
- Sassi, S.; Ebrahemi, M.; Mozien, M.A.; Hadary, Y.E. New Design of Flat-Proof Non-Pneumatic Tire. Inter. J. Mech. Sys Eng. 2016, 2, 114. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, Y.; Xu, H.; Lin, F.; Wang, Q. Rigid-flexible coupling modelling and dynamic performance analysis of novel flexible road wheel. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2019, 234, 67–81. [Google Scholar] [CrossRef]
- Kojio, K.; Nozaki, S.; Takahara, A.; Yamasaki, S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: A review. J. Polym. Res. 2020, 27, 140. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, K.; Sang, S.; Li, Y.; Tang, J. Study on properties of polyurethane elastomers prepared with different hard segment structure. J. Appl. Polym. Sci. 2022, 139, e52479. [Google Scholar] [CrossRef]
- Manga, K.K. Computational Method for Solving Spoke Dynamics on High Speed Rolling Tweel (TM). Master’s Thesis, Clemson University, Clemson, SC, USA, 2008. [Google Scholar]
- Dezianian, S.; Azadi, M. Multi-Material Metamaterial Topology Optimization to Minimize the Compliance and the Constraint of Weight: Application of Non-Pneumatic Tire Additive-Manufactured with PLA/TPU Polymers. Polymers 2023, 15, 1927. [Google Scholar] [CrossRef]
- Hu, S.; He, S.; Wang, Y.; Wu, Y.; Shou, T.; Yin, D.; Mu, G.; Zhao, X.; Gao, Y.; Liu, J.; et al. Self-repairable, recyclable and heat-resistant polyurethane for high-performance automobile tires. Nano Energy 2022, 95, 107012. [Google Scholar] [CrossRef]
- Bendjaouahdou, C.; Bensaad, S. Aging studies of a polypropylene and natural rubber blend. Int. J. Ind. Chem. 2018, 9, 345–352. [Google Scholar] [CrossRef]
- Dung, N.T.; Hanh, L.T.M.; Lan, P.T.; Minh, V.X.; Bien, T.V. Properties of polymer blends based on devulcanized waste rubber powder (d-WRP)/EPDM/P. Vietnam. J. Chem. 2018, 56, 237–243. [Google Scholar] [CrossRef]
- Amin, S.; Amin, M. Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation. Rev. Adv. Mater. Sci. 2011, 29, 15–30. [Google Scholar]
- Wang, S.; He, P.; Geng, Q.; Huang, H.; Sang, L.; Yao, Z. Investigation of Additive-Manufactured Carbon Fiber-Reinforced Polyethylene Terephthalate Honeycomb for Application as Non-Pneumatic Tire Support Structure. Polymers 2024, 16, 1091. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Song, Y.; Li, Y.; Du, M.; Pang, J.; Shi, X. Study on Adhesion Mechanism of Resorcinol Formaldehyde Cobalt Salt Adhesive System in Tire Skeleton Materials. Acta Polym. Sin. 2020, 51, 411–420. [Google Scholar]
- Chowdhury, S.G.; Chanda, J.; Ghosh, S.; Banerjee, K.; Banerjee, S.S.; Das, A.; Ghosh, P.; Bhattacharyya, S.K.; Mukhopadhyay, R. Impact of adhesive ingredients on adhesion between rubber and brass-plated steel wire in tire. Polym. Eng. Sci. 2020, 60, 1973–1983. [Google Scholar] [CrossRef]
- Du, Y.; Zheng, X.; Shao, X.; Hou, Z.; Sun, P.P.; Jiang, X.; Yue, Z.; Xu, Q.; Wang, Y.; Cheng, F. Improved adhesion properties of natural rubber to polyamide cord through mussel-inspired adhesive. J. Polym. Res. 2021, 28, 357. [Google Scholar] [CrossRef]
- Wang, S.; Cao, M.; Xue, H.; Cong, F.; Li, X.; Zhao, C.; Su, W. Nano-silica reinforced epoxy resin/nano-rubber composite material with a balance of stiffness and toughness. High Perform. Polym. 2021, 33, 685–694. [Google Scholar] [CrossRef]
- Louis, A.; Noordermeer, J.W.; Dierkes, W.K.; Blume, A. Technologies for polymer cord/rubber adhesion in tire applications. In Proceedings of the 186th Technical Meeting ACS Rubber Division, Nashville, TN, USA, 14–16 October 2014; ACS Rubber Division: Akron, OH, USA, 2014; pp. 1–29. [Google Scholar]
- Shirazi, M.; de Rooij, M.B.; Talma, A.G.; Noordermeer, J.W.M. Adhesion of RFL-coated aramid fibres to elastomers: The role of elastomer–latex compatibility. J. Adhes. Sci. Technol. 2013, 27, 1886–1898. [Google Scholar] [CrossRef]
- Celtik, F.; Kilic, E.; Bora, M.O.; Altuncu, E. Effect of Liquid Rubbers on The Thermal and Adhesion Properties of whe Tire Skim Compound. Acad. Perspect. Procedia 2021, 4, 101–110. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, T.; Kong, L.; Wan, J.; Zhao, S. Structure and adhesive properties of the RFL-coated continuous basalt fiber cord/rubber interface. J. Appl. Polym. Sci. 2016, 134, 44353. [Google Scholar] [CrossRef]
- Morampudi, P.; Namala, K.K.; Gajjela, Y.K.; Barath, M.; Prudhvi, G. Review on glass fiber reinforced polymer composites. Mater. Today Proc. 2021, 43, 314–319. [Google Scholar] [CrossRef]
- Somarathna, H.M.C.C.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The Use of Polyurethane for Structural and Infrastructural Engineering Applications: A State-of-the-Art Review. Constr. Build. Mater. 2018, 190, 995–1014. [Google Scholar] [CrossRef]
- Verónica, P.S.; José, M.M.M. DIFFERENT APPROACH TO THE MECHANISM OF ADHESION OF SURFACE TREATED WITH TRICHLOROISOCYANURIC ACID SOLUTION RUBBER AND POLYURETHANE ADHESIVE JOINTS. Rubber Chem. Technol. 2022, 95, 590–611. [Google Scholar]
- Kapica, R.; Tyczkowski, J.; Balcerzak, J.; Makowski, M.; Sielski, J.; Worwa, E. Enhancing adhesive joints between commercial rubber (SBS) and polyurethane by low-pressure plasma surface modification. Int. J. Adhes. Adhes. 2019, 95, 102415. [Google Scholar] [CrossRef]
- Ochoa-Putman, C.; Vaidya, U.K. Mechanisms of interfacial adhesion in metal–polymer composites—Effect of chemical treatment. Compos. Part. A Appl. Sci. Manuf. 2011, 42, 906–915. [Google Scholar] [CrossRef]
- Teppa, S.; Mears, L. Bonding Strength. Modeling of Polyurethane to Vulcanized Rubber; 0148-7191; SAE Technical Paper; SAE: Warrendale, PA, USA, 2009. [Google Scholar]
- Wilczyński, K.; Wilczyński, K.J.; Buziak, K. Modeling and Experimental Studies on Polymer Melting and Flow in Injection Molding. Polymers 2022, 14, 2106. [Google Scholar] [CrossRef] [PubMed]
- Toncheva, A.; Brison, L.; Dubois, P.; Laoutid, F. Recycled Tire Rubber in Additive Manufacturing: Selective Laser Sintering for Polymer-Ground Rubber Composites. Appl. Sci. 2021, 11, 8778. [Google Scholar] [CrossRef]
- Zhao, Y.-Q.; Xiao, Z.; Lin, F.; Zhu, M.-M.; Deng, Y.-J. Influence Analysis of Machining and Installation Errors on the Radial Stiffness of a Non-Pneumatic Mechanical Elastic Wheel. Chin. J. Mech. Eng. 2018, 31, 1–9. [Google Scholar] [CrossRef]
- He, H.; Yu, X.; Wang, R.; Lu, Y.; Zhang, L.; Li, F. Optimization design of cooling system for injection molding mold of non-pneumatic tire. Therm. Sci. Eng. Prog. 2023, 42, 101866. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Lin, X.; Gao, L.; Liu, T.; Lu, Y.; Wang, R. Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method. Polymers 2020, 12, 2492. [Google Scholar] [CrossRef]
- Limrungruengrat, S.; Chaikittiratana, A.; Chantrasmi, T. Effects of Rubber and Mould Temperatures on the Solid Tire Curing Process. K. Eng. Mater. 2020, 856, 323–330. [Google Scholar] [CrossRef]
- Saleh, B.; Jiang, J.; Ma, A.; Song, D.; Yang, D. Effect of Main Parameters on the Mechanical and Wear Behaviour of Functionally Graded Materials by Centrifugal Casting: A Review. Met. Mater. Int. 2019, 25, 1395–1409. [Google Scholar] [CrossRef]
- Eidelman, E.D.; Durnev, M.A. Surface Hardening of Composite Material by the Centrifugal-Casting Method. Tech. Phys. Lett. 2018, 44, 284–286. [Google Scholar] [CrossRef]
- Bert, B.; Austin, C. Life-Cycle Environmental Impact of Michelin Tweel Tire for Passenger Vehicles. SAE Int. J. Passen Car 2011, 4, 32–43. [Google Scholar]
- Gao, F.; Yang, L.; Shao, C. Robust iterative learning control with applications to injection molding process. Chem. Eng. Sci. 2001, 56, 7025–7034. [Google Scholar] [CrossRef]
- Luo, L.; Yao, Y.; Gao, F.; Zhao, C. Mixed-effects gaussian process modeling approach with application in injection molding processes. J. Process Control 2018, 62, 37–43. [Google Scholar] [CrossRef]
- Czepiel, M.; Bańkosz, M.; Sobczak-Kupiec, A. Advanced Injection Molding Methods: Review. Materials 2023, 16, 5802. [Google Scholar] [CrossRef]
- Kuang, T.; Wang, J.; Liu, H.; Yuan, Z. Effects of Processing Method and Parameters on the Wall Thickness of Gas-Projectile-Assisted Injection Molding Pipes. Polymers 2023, 15, 1985. [Google Scholar] [CrossRef]
- Xin, L.L.; Sharif, S.; Saad, R.M. Gas-assisted Injection Molding: Case Study on Process Optimization of CD-Rom Tray Manufacturing. Procedia Manuf. 2015, 2, 538–542. [Google Scholar] [CrossRef]
- Ding, Y.; Hassan, M.H.; Bakker, O.; Hinduja, S.; Bártolo, P. A Review on Microcellular Injection Moulding. Materials 2021, 14, 4209. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, G.; Wang, G. Formation mechanism of porous structure in plastic parts injected by microcellular injection molding technology with variable mold temperature. Appl. Therm. Eng. 2017, 114, 484–497. [Google Scholar] [CrossRef]
- Gao, P.; MacKay, I.; Gruber, A.; Krantz, J.; Piccolo, L.; Lucchetta, G.; Pelaccia, R.; Orazi, L.; Masato, D. Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding. Micromachines 2023, 14, 863. [Google Scholar] [CrossRef] [PubMed]
- Huzaim, N.H.M.; Rahim, S.Z.A.; Musa, L.; Abdellah, A.E.-h.; Abdullah, M.M.A.B.; Rennie, A.; Rahman, R.; Garus, S.; Błoch, K.; Sandu, A.V.; et al. Potential of Rapid Tooling in Rapid Heat Cycle Molding: A Review. Materials 2022, 15, 3725. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Xu, C.; Yi, L.; Li, N. Finite Element Design and Numerical Simulation on Non-Pneumatic Beehive Damping Tire. AMR 2011, 291–294, 418–422. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Hua, G.; Cheng, T.C.E. Virgin or recycled? Optimal pricing of 3D printing platform and material suppliers in a closed-loop competitive circular supply chain. Resour. Conserv. Recy 2020, 162, 105035. [Google Scholar] [CrossRef]
- Shahpasand, R.; Talebian, A.; Mishra, S. Investigating environmental and economic impacts of the 3D printing technology on supply chains: The case of tire production. J. Clean. Prod. 2023, 390, 135917. [Google Scholar] [CrossRef]
- Picard, M.; Mohanty, A.K.; Misra, M. Recent advances in additive manufacturing of engineering thermoplastics: Challenges and opportunities. RSC Adv. 2020, 59, 36058–36089. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, J.; He, Y. A Review of 3D Printing Technologies for Soft Polymer Materials. Adv. Funct. Mater. 2020, 30, 2000187. [Google Scholar] [CrossRef]
- Narasimhulu, A.; Varnali, D.; Vijaya, V.V. Study on 3D printed auxetic structure-based non-pneumatic tyres (NPT’S). Mater. Manuf. Process 2022, 37, 1280–1297. [Google Scholar]
- Jafferson, J.; Hemkar, S. Design of 3D printable airless tyres using NTopology. Mater. Today Proc. 2021, 46 Pt 2, 1147–1160. [Google Scholar] [CrossRef]
- Alireza, P.D.; Javanshir, L.; Reza, M.S.K. A Finite-Strain Simulation of 3D Printed Airless Tires. J. Eng. Mech. 2023, 149, 04023073. [Google Scholar]
- Volochko, A.; Yankevich, S.; Yankevich, N. Analytical and Experimental Research for Development of the Airless Tires for Urban Micromobility Means. Int. J. Appl. Sci. Dev. 2024, 3, 57–73. [Google Scholar] [CrossRef]
- Du, X.; Zhao, Y.; Wang, Q.; Fu, H. Numerical analysis of the dynamic interaction between a non-pneumatic mechanical elastic wheel and soil containing an obstacle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2016, 231, 0954–4070. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, Y.; Han, X.; Zhu, M.; Xiao, Z. Finite element modeling of interaction between non-pneumatic mechanical elastic wheel and soil. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 3293–3304. [Google Scholar] [CrossRef]
Application | Representative Illustration | Reference | ||
---|---|---|---|---|
Mechanical elastic support type | Areas with medium/low speed and medium/high load | [10] | ||
[11,23,24] | ||||
Elastomer elastic support type | Spoke type | Areas with medium speed and load/areas with high speed and light load | [19,20,43,44,45,46] | |
Honeycomb type | [11,47,48] | |||
Cellular type | [32,49] | |||
Cross-supported type | [36] | |||
… | … | … | ||
Solid type | Areas with low speed but high load | [39,40,41] |
Processing Method | Application | Representative Illustration | Available Materials | Applicable Molding Process for NPTS | Reference |
---|---|---|---|---|---|
Compression molding | Solid-type NPTs, annular/strip pre-cured tread, NPTs with simple elastic support structures | Rubber/PU | From the interior to the exterior/from the exterior to the interior/one-piece molding | [39] | |
Casting | Support structures, tread | CPU | From the interior to the exterior/from the exterior to the interior | [10] | |
Injection molding | Support structures | TPU | From the interior to the exterior/from the exterior to the interior | [93] | |
3D printing | Support structures, entire NPT | TPU/FET/Rubber | From the interior to the exterior/from the exterior to the interior/one-piece molding | [14,94] | |
Mechanical assembly | Support structures | Metal | From the interior to the exterior/from the exterior to the interior | [11,92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Zhong, H.; Qin, K.; Xu, T.; Yang, W.; Zhang, Y.; Lu, L. The Development of Processing Methods and Materials Used for Non-Pneumatic Tires: A Review. Materials 2024, 17, 5660. https://doi.org/10.3390/ma17225660
Sun M, Zhong H, Qin K, Xu T, Yang W, Zhang Y, Lu L. The Development of Processing Methods and Materials Used for Non-Pneumatic Tires: A Review. Materials. 2024; 17(22):5660. https://doi.org/10.3390/ma17225660
Chicago/Turabian StyleSun, Meng, Haolong Zhong, Kangpei Qin, Ting Xu, Wengang Yang, Yu Zhang, and Lei Lu. 2024. "The Development of Processing Methods and Materials Used for Non-Pneumatic Tires: A Review" Materials 17, no. 22: 5660. https://doi.org/10.3390/ma17225660
APA StyleSun, M., Zhong, H., Qin, K., Xu, T., Yang, W., Zhang, Y., & Lu, L. (2024). The Development of Processing Methods and Materials Used for Non-Pneumatic Tires: A Review. Materials, 17(22), 5660. https://doi.org/10.3390/ma17225660