Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Improved adhesion properties of natural rubber to polyamide cord through mussel-inspired adhesive

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A facile and efficient mussel-inspired bonding method is developed to improve the interfacial adhesion of polyamide cord/rubber composites by introducing silica coated with polydopamine (PDA). PDA layer is deposited on the silica surface by simply dipping the silica particles into an alkaline dopamine solution. The core–shell structure can endow polyamide cord/rubber high adhesion strength through the strengthening effect of silica on the adhesive transition layer. This new dipping system displays low toxicity, high efficiency and simplicity, which is crucial to rubber industry and human health. Compared with the original cord, the pulled-out force of our developed dipped cord is increased by 63%. In addition, the adhesive property of our developed dipped cord/rubber is characterized, and the adhesive mechanism is also studied in detail. Bionic design of mussels has provided a new way to enhance the adhesion between polyamide cord and rubber in rubber industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shi X, Lian C, Shang Y, Zhang H (2015) Evolution of the dynamic fatigue failure of the adhesion between rubber and polymer cords. Polym Testing 48:175–182

    Article  CAS  Google Scholar 

  2. Owodunni AA, Lamaming J, Hashim R, Taiwo OFA, Hussin MH, Kassim MHM, Bustami Y, Sulaiman O, Amini MHM, Hiziroglu S (2020) Adhesive application on particleboard from natural fibers: A review. Polym Compos 41(11):4448–4460

    Article  CAS  Google Scholar 

  3. Averett RD, Realff ML, Michielsen S, Neu RW (2006) Mechanical behavior of nylon 66 fibers under monotonic and cyclic loading. Compos Sci Technol 66:1671–1681

    Article  CAS  Google Scholar 

  4. Baldan A (2004) Adhesively-bonded joints in metallic alloys, polymers and composite materials: mechanical and environmental durability performance. J Mater Sci 39:4729–4797

    Article  CAS  Google Scholar 

  5. Adachi T, Kataoka T, Higuchi M (2015) Predicting impact shear strength of phenolic resin adhesive blended with nitrile rubber. Int J Adhes Adhes 56:53–60

    Article  CAS  Google Scholar 

  6. Lu KY, Ge X, Wei ZH, Li G, Yang XP, Liu HY (2021) Synergistically enhanced ultraviolet aging resistance and interfacial adhesion of poly (p-phenylene benzobisoxazole) fiber with soluble naphthalimide sizing. Polym Compos. https://doi.org/10.1002/pc.25964

    Article  Google Scholar 

  7. Wennekes WB, Noordermeer JW, Datta RN (2007) Mechanistic investigations into the adhesion between RFL-treated cords and rubber. Part I: The influence of rubber curatives. Rubber Chem Technol 80(4):545–64

  8. Wennekes WB, Datta RN, Noordermeer JW (2007) Mechanistic investigations into the adhesion between RFL-treated cords and rubber. Part II: The influence of the vinyl-pyridine content of the RFL-latex. Rubber Chem Technol 80(4):565–79

  9. Cook JW, Edge S, Packham DE (1997) The adhesion of natural rubber to steel and the use of the peel test to study its nature. Int J Adhes Adhes 17:333–337

    Article  CAS  Google Scholar 

  10. Sasidharan Achary P, Gouri C, Ramaswamy R (2001) Reactive bonding of natural rubber to metal by a nitrile–phenolic adhesive. J Appl Polym Sci 81:2597–608

  11. Jazenski PJ, Manino LG (1978) Adhesive compositions comprising (a) halogenated polyolefin (b) aromatic nitroso compound and (c) lead salts. U.S. Patent 4, 119,587

  12. Troughton Jr EB, Kucera HW (1992) Phenolic resin adhesion promoters and adhesive compositions, and bonding method employing same. U.S. Patent 5,162,156

  13. Auerbach RA, Berry DB (1991) Adhesive compositions. U.S. Patent 5,036,122

  14. Rezaeian I, Zahedi P, Rezaeian A (2012) Rubber adhesion to different substrates and its importance in industrial applications: a review. J Adhes Sci Technol 26:721–744

    Article  CAS  Google Scholar 

  15. Kwak MJ, Kim DH, You JB, Moon H, Joo M, Lee E, Im SG (2018) A sub-minute curable nanoadhesive with high transparency, strong adhesion, and excellent flexibility. Macromolecules 51:992–1001

    Article  CAS  Google Scholar 

  16. Liu Y, Zhao X, Cai B, Pei T, Tong Y, Tang Q, Liu Y (2014) Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple dropcasting method. Nanoscale 6:1323–1328

    Article  CAS  Google Scholar 

  17. Ryu JH, Messersmith PB, Lee H (2018) Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces 10:7523–7540

    Article  CAS  Google Scholar 

  18. Qiu WZ, Yang HC, Xu ZK (2018) Dopamine-assisted co-deposition: an Emerging and promising strategy for surface modification. Adv Colloid Interface Sci 256:111–125

    Article  CAS  Google Scholar 

  19. Yang X, Yan L, Ran F, Pal A, Long J, Shao L (2019) Interface-confined surface engineering constructing water-unidirectional Janus membrane. J Membr Sci 576:9–16

    Article  CAS  Google Scholar 

  20. Sun H, Yang X, Zhang Y, Cheng X, Xu Y, Bai Y, Shao L (2018) Segregation-induced in situ hydrophilic modification of poly(vinylidene fluoride) ultrafiltration membranes via sticky poly(ethylene glycol) blending. J Membr Sci 563:22–30

    Article  CAS  Google Scholar 

  21. Yang X, Sun H, Pal A, Bai Y, Shao L (2018) Biomimetic silicification on membrane surface for highly efficient treatments of both oil-in-water emulsion and protein wastewater. ACS Appl Mater Interfaces 10:29982–29991

    Article  CAS  Google Scholar 

  22. Shi XY, Ma MQ, Lian CB, Zhu DW (2013) Investigation on effects of dynamic fatigue frequency, temperature and number of cycles on the adhesion of rubber to steel cord by a new testing technique. Polym Testing 32:1145–1153

    Article  CAS  Google Scholar 

  23. Sa RN, Yan Y, Wei ZH, Zhang LQ, Wang WC, Tian M (2014) Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. ACS Appl Mater Interfaces 6:21730–21738

    Article  CAS  Google Scholar 

  24. Li WJ, Li Y, Sheng M, Cui ST, Wang ZH, Zhang XJ, Yang C, Yu ZY, Zhang YL, Tian SC, Dai ZD, Xu Q (2019) Enhanced adhesion of carbon nanotubes by dopamine modification. Langmuir 35:4527–4533

    Article  CAS  Google Scholar 

  25. Zhang GP, Cheng J, Shi L, Lin X, Zhang JY (2012) Study on curing kinetics of diallylbearing epoxy resin using sulfur as curing agent. Thermochim Acta 538:36–42

    Article  CAS  Google Scholar 

  26. Zhang YR, Tuo R, Yang W, Wu JL, Zhu J, Zhang C, Lin J, Bian XM (2020) Improved thermal and electrical properties of epoxy resin composites by dopamine and silane coupling agent modified hexagonal BN. Polym Compos 41(11):4727–4739

    Article  CAS  Google Scholar 

  27. Wei DW, Wei HY, Gauthier AC, Song JL, Jin YC, Xiao HN (2020) Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. Journal of Bioresources and Bioproducts 5(1):1–15

    Article  CAS  Google Scholar 

  28. Xinting H, Junyan P, Shaohua J, Jian X, Yu S, Xiao G (2020) Robust superamphiphobic coatings based on raspberry-like hollow SnO2 composites. Langmuir 36(37):11044–11053

    Article  Google Scholar 

  29. Feixiang G, Zhaoping S, Furong X, Huili W, Dehai Y, Guodong L, Wenxia L (2020) Preparation of hydrophobic transparent paper via using polydimethylsiloxane as transparent agent. Journal of Bioresources and Bioproducts 5(1):37–43

    Article  Google Scholar 

  30. Gong X, Zhang L, He S, Jiang S, Wang W, Wu Y (2020) Rewritable superhydrophobic coatings fabricated using water-soluble polyvinyl alcohol. Mater Des 196:109112

  31. Zhang N, Liu Y, Zhao H, Ma SH, Gao SY, He DL, Bai JB (2021) Functional performance evolution of urchin-like structured SiO2-carbon nanotube hybrid constructions reinforcing polyethylene-based composites. Polym Compos. https://doi.org/10.1002/pc.25938

    Article  Google Scholar 

  32. Eslami Z, Mirzapour M (2021) Compatibilizing effect and reinforcing efficiency of nanosilica on ethylene-propylene diene monomer/chloroprene rubber blends. Polym Compos. https://doi.org/10.1002/pc.25936

    Article  Google Scholar 

  33. Xiong JX, Cui R, Xu CH, Ding JP, Chen YK (2021) Silica-reinforced ethylene propylene diene monomer/polypropylene thermoplastic vulcanizates with interfacial compatibilized by methylacrylate. Polym Compos 42(2):701–713

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from projects funded by Natural Science Foundation of China (51703111, 51703109 and 51603111), and project funded by China Postdoctoral Science Foundation (2020M672014) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Li or Shuai Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Zheng, X., Shao, X. et al. Improved adhesion properties of natural rubber to polyamide cord through mussel-inspired adhesive. J Polym Res 28, 357 (2021). https://doi.org/10.1007/s10965-021-02728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02728-2

Keywords

Navigation