Wearable Shoe-Mounted Piezoelectric Energy Harvester for a Self-Powered Wireless Communication System
<p>Wireless communication system between worker and control center.</p> "> Figure 2
<p>(<b>a</b>) Piezoelectric device with a crack, (<b>b</b>) Piezoelectric device with conductive tape and ultraviolet coating, (<b>c</b>) Layers constituting a piezoelectric device and a perovskite PZT unit cell, (<b>d</b>) Direction (polarity) of the voltage formed by default state (<b>i</b>), compression (<b>ii</b>) and release (<b>iii</b>).</p> "> Figure 3
<p>(<b>a</b>) Schematic and (<b>b</b>) Real image of the PEH, (<b>c</b>) Energy harvesting shoe with PEH.</p> "> Figure 4
<p>(<b>a</b>) Total displacement of the piezoelectric device in millimeters, (<b>b</b>) Open-circuit voltage across the piezoelectric device.</p> "> Figure 5
<p>(<b>a</b>) Open-circuit voltage, (<b>b</b>) Number of cycles with the pushing tester, (<b>c</b>) Experimental setup, (<b>d</b>) block diagram of measurement system, (<b>e</b>) Graph of voltage, current, and power according to the load resistance.</p> "> Figure 6
<p>(<b>a</b>) Open-circuit voltage waveform and (<b>b</b>) Maximum voltage according to the weight of the object, (<b>c</b>) Charged voltage with a capacitor with 47 μF and (<b>d</b>) With 94 μF.</p> "> Figure 7
<p>Schematic of the wireless communication circuit with a step-down converter.</p> "> Figure 8
<p>(<b>a</b>) Charged voltage in the capacitor and output voltage, (<b>b</b>) Time needed to transfer a signal.</p> "> Figure 9
<p>(<b>a</b>) Transmitter, (<b>b</b>) Receiver of the wireless communication system, (<b>c</b>) Diagram of the operating algorithm of the wireless communication system. LCD screen with (<b>d</b>) Stable and (<b>e</b>) Warning conditions.</p> ">
Abstract
:1. Introduction
2. Design of a Piezoelectric Energy Harvester for a Shoe
2.1. UV Coating
2.2. Characteristic of PZT Ceramic
2.3. Piezoelectric Energy Harvester
3. Results and Discussion
3.1. Simulation
3.2. Performance Evaluation
3.3. Performance According to Weight
4. Application
4.1. Step-down Converter with a Wireless Transmitter
4.2. Emergency Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rible, G.S.; Sabate, M.C.I.; Hora, J.A. Low power design of MPPT circuit using power down system in 65nm CMOS process. J. Telecommun. Electron. Comput. Eng. 2018, 10, 45–50. [Google Scholar]
- Jiang, B.; Cao, K.; Chen, L.; Chen, H.; Zhang, H.; Wang, Q. Low-power design of a self-powered piezoelectric energy harvesting system. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 6937–6940. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Xie, G.; Yang, Y.; Zhang, Z. An ultra-low power output capacitor-less low-dropout regulator with slew-rate-enhanced circuit. J. Semicond. 2018, 39, 035002. [Google Scholar] [CrossRef]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Jung, H.J.; Song, Y.; Hong, S.K.; Yang, C.H.; Hwang, S.J.; Jeong, S.Y.; Sung, T.H. Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sens. Actuators A Phys. 2015, 222, 314–321. [Google Scholar] [CrossRef]
- Cho, J.Y.; Jeong, S.; Jabbar, H.; Song, Y.; Ahn, J.H.; Kim, J.H.; Jung, H.J.; Yoo, H.H.; Sung, T.H. Piezoelectric energy harvesting system with magnetic pendulum movement for self-powered safety sensor of trains. Sens. Actuators A Phys. 2016, 250, 210–218. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Jung, H.J.; Jabbar, H.; Hong, S.K.; Ahn, J.H.; Sung, T.H. Design of a multi-array piezoelectric energy harvester for a wireless switch. Int. J. Hydrog. Energy 2016, 41, 12696–12703. [Google Scholar] [CrossRef]
- Jabbar, H.; Hong, S.D.; Hong, S.K.; Yang, C.H.; Jeong, S.Y.; Sung, T.H. Sustainable micro-power circuit for piezoelectric energy harvesting tile. Integr. Ferroelectr. 2017, 183, 193–209. [Google Scholar] [CrossRef]
- Wu, X.; Lee, D.-W. An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application. Sens. Actuators A Phys. 2014, 219, 73–79. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Y.; Huang, Z.; Lee, C.; Wang, F. Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network. Sens. Actuators A Phys. 2018, 271, 364–372. [Google Scholar] [CrossRef]
- Seung, W.; Gupta, M.K.; Lee, K.Y.; Shin, K.; Lee, J.; Kim, T.Y.; Kim, S.; Lin, J.; Kim, J.H.; Kim, S. Nanopatterned Textile-Based Wearable Triboelectric Nanogenerator. ACS Nano 2015, 9, 3501–3509. [Google Scholar] [CrossRef]
- Lee, J.H.; Hinchet, R.; Kim, S.K.; Kim, S.; Kim, S.W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Yang, Y.; Ye, F. Combining Solar Energy Harvesting with Wireless Charging for Hybrid Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2018, 17, 560–576. [Google Scholar] [CrossRef]
- Brogan, Q.; O’Connor, T.; Ha, D.S. Solar and thermal energy harvesting with a wearable jacket. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014; pp. 1412–1415. [Google Scholar] [CrossRef]
- Farhat, M.; Barambones, O.; Sbita, L. A new maximum power point method based on a sliding mode approach for solar energy harvesting. Appl. Energy 2017, 185, 1185–1198. [Google Scholar] [CrossRef]
- Uchino, K.; Ishii, T. Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 2010, 400, 305–320. [Google Scholar] [CrossRef]
- Pillatsch, P.; Xiao, B.L.; Shashoua, N.; Gramling, H.M.; Yeatman, E.M.; Wright, P.K. Degradation of bimorph piezoelectric bending beams in energy harvesting applications. Smart Mater. Struct. 2017, 26, 35046. [Google Scholar] [CrossRef]
- Asthana, P.; Khanna, G. An autonomous piezoelectric energy harvesting system for smart sensor nodes in IoT applications. Appl. Phys. A Mater. Sci. Process. 2021, 127, 1–11. [Google Scholar] [CrossRef]
- Rubes, O.; Chalupa, J.; Ksica, F.; Hadas, Z. Development and experimental validation of self-powered wireless vibration sensor node using vibration energy harvester. Mech. Syst. Signal. Process. 2021, 160, 107890. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, J.Y.; Jhun, J.P.; Song, G.J.; Eom, J.H.; Jeong, S.; Hwang, W.; Woo, M.S.; Sung, T.H. Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform. Energy 2021, 222, 119845. [Google Scholar] [CrossRef]
- Liu, Y.; Khanbareh, H.; Halim, M.A.; Feeney, A.; Zhang, X.; Heidari, H.; Ghannam, R. Piezoelectric energy harvesting for self-powered wearable upper limb applications. Nano Sel. 2021, 1–21. [Google Scholar] [CrossRef]
- Gatto, A.; Frontoni, E. Energy Harvesting system for smart shoes. In Proceedings of the 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 10–12 September 2014. [Google Scholar] [CrossRef]
- Moro, L.; Benasciutti, D. Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Mater. Struct. 2010, 19, 115011. [Google Scholar] [CrossRef]
- Shenck, N.S.; Paradiso, J. A Energy Scavenging With Shoe -Mounted Piezoelectrics Electricity From the Forces Exerted on a Shoe During Walking. Media 2001, 21, 30–42. [Google Scholar]
- Saha, P.; Goswami, S.; Chakrabarty, S.; Sarkar, S. Simulation and model verification of shoe embedded piezoelectric energy harvester. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014; pp. 1–6. [Google Scholar]
- Jeong, S.Y.; Hwang, W.S.; Cho, J.Y.; Jeong, J.C.; Ahn, J.H.; Kim, K.B.; Hong, S.D.; Song, G.J.; Jeon, D.H.; Sung, T.H. Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes. Energy 2019, 177, 87–93. [Google Scholar] [CrossRef]
- Kuang, Y.; Daniels, A.; Zhu, M. A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments. J. Phys. D Appl. Phys. 2017, 50, 345501. [Google Scholar] [CrossRef]
- Yin, Z.; Gao, S.; Jin, L.; Guo, S.; Wu, Q.; Li, Z. A shoe-mounted frequency up-converted piezoelectric energy harvester. Sens. Actuators A Phys. 2021, 318, 112530. [Google Scholar] [CrossRef]
- Asano, S.; Nishimura, S.; Ikeda, Y.; Morita, T.; Hosaka, H. Energy harvester for safety shoes using parallel piezoelectric links. Sens. Actuators A Phys. 2020, 309, 112000. [Google Scholar] [CrossRef]
- Chaudhary, P.; Azad, P. Energy Harvesting Using Shoe Embedded with Piezoelectric Material. J. Electron. Mater. 2020, 49, 6455–6464. [Google Scholar] [CrossRef]
- Han, Y.; Cao, Y.; Zhao, J.; Yin, Y.; Ye, L.; Wang, X.; You, Z. A self-powered insole for humanmotion recognition. Sensors 2016, 16, 1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.K.; Woo, M.S.; Song, D.; Yang, C.H.; Baek, K.H.; Sung, T.H. Restoration and reinforcement method for damaged piezoelectric materials. Ferroelectrics 2013, 449, 52–61. [Google Scholar] [CrossRef]
Material/Component Parameter | Value | |
---|---|---|
Piezoelectric Ceramic | Density (g/cm3) | 7.6 |
Dielectric constant εT33/ε0 | 2300.0 | |
Piezoelectric coefficients, d33 (10−12 mV) | 450.0 | |
Elastic properties, S11E (×10−12 m2/N) | 13.8 | |
Elastic properties, S12E (×10−12 m2/N) | 11.8 | |
Steel Substrate | Young’s Modulus (GPa) | 193.0 |
Density (g/cm3) | 8.0 | |
Spring | Spring constant (N/mm) | 0.941 |
Diameter of spring wire (mm) | 0.700 | |
Outer diameter of spring (mm) | 10.000 | |
Free length of spring (mm) | 6.000 | |
Solid height (mm) | 2.800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.Y.; Xu, L.L.; Ryu, C.H.; Kumar, A.; Hong, S.D.; Jeon, D.H.; Cho, J.Y.; Ahn, J.H.; Joo, Y.H.; Jeong, I.W.; et al. Wearable Shoe-Mounted Piezoelectric Energy Harvester for a Self-Powered Wireless Communication System. Energies 2022, 15, 237. https://doi.org/10.3390/en15010237
Jeong SY, Xu LL, Ryu CH, Kumar A, Hong SD, Jeon DH, Cho JY, Ahn JH, Joo YH, Jeong IW, et al. Wearable Shoe-Mounted Piezoelectric Energy Harvester for a Self-Powered Wireless Communication System. Energies. 2022; 15(1):237. https://doi.org/10.3390/en15010237
Chicago/Turabian StyleJeong, Se Yeong, Liang Liang Xu, Chul Hee Ryu, Anuruddh Kumar, Seong Do Hong, Deok Hwan Jeon, Jae Yong Cho, Jung Hwan Ahn, Yun Hwan Joo, In Wha Jeong, and et al. 2022. "Wearable Shoe-Mounted Piezoelectric Energy Harvester for a Self-Powered Wireless Communication System" Energies 15, no. 1: 237. https://doi.org/10.3390/en15010237
APA StyleJeong, S. Y., Xu, L. L., Ryu, C. H., Kumar, A., Hong, S. D., Jeon, D. H., Cho, J. Y., Ahn, J. H., Joo, Y. H., Jeong, I. W., Hwang, W. S., & Sung, T. H. (2022). Wearable Shoe-Mounted Piezoelectric Energy Harvester for a Self-Powered Wireless Communication System. Energies, 15(1), 237. https://doi.org/10.3390/en15010237