Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012
"> Figure 1
<p>Yangtze River Delta Urban Agglomeration (YRDUA) study area.</p> "> Figure 2
<p>Flowchart of the urban expansion characteristic analysis of the YRDUA.</p> "> Figure 3
<p>Changes in the urban built-up area of the YRDUA for 1993–2012 extracted from corrected DMSP/OLS NTL data.</p> "> Figure 4
<p>Annual growth area (AGA) plots of the YRDUA urban built-up area for 1993–2012.</p> "> Figure 5
<p>Map of standard deviational ellipses (SDEs) for 1993 to 2012 for the YRDUA.</p> "> Figure 6
<p>Map of SDEs for 1993 to 2012 for five metropolitan circles.</p> "> Figure 7
<p>SDE center location changes occurring from 1993 to 2012 for (<b>a</b>) The YRDUA; (<b>b</b>) Nanjing metropolitan circle; (<b>c</b>) Hangzhou metropolitan circle; (<b>d</b>) Hefei metropolitan circle; (<b>e</b>) Suxichang metropolitan circle; and (<b>f</b>) Ningbo metropolitan circle.</p> "> Figure 8
<p>Plots of rotation angles and oblateness values for YRDUA SDEs for 1993–2012.</p> ">
Abstract
:1. Introduction
2. Datasets
2.1. Study Area
2.2. Data Acquisition and Pre-Processing
3. Methodology
3.1. Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) Data Calibration
3.1.1. Intercalibration
3.1.2. Intra-Annual Composition
3.1.3. Inter-Annual Series Correction
3.2. Urban Extent Extraction from Corrected DMSP/OLS Nighttime Light (NTL) Data
3.3. Urban Expansion Characteristic Analysis
3.3.1. Urban Expansion Rate Model
3.3.2. Urban Expansion Spatial Pattern Model
3.3.3. Urban Expansion Evaluation Model
4. Results
4.1. Urban Expansion Rate Analysis
4.2. Urban Expansion Spatial Pattern Analysis
4.3. Urban Expansion Evaluation Analysis
5. Discussion
6. Conclusions
- (1)
- The YRDUA experienced increasing rates of urban expansion rates from 1993–2007, and urban expansion rates decreased after 2007 as a result of the global financial crisis of 2007–2009. For the metropolitan circles examined, urban expansion rates within the Suxichang and Ningbo metropolitan circles were seriously affected by the financial crisis after 2007. By contrast, the Hefei metropolitan circle maintained an increasing expansion rate over the 20-year period.
- (2)
- Urban expansion of the YRDUA mainly occurred from the northeast to the southwest over the 20-year period. Urban expansion spatial patterns in the YRDUA involved internal infill from 1993–2007, and then external sprawl and suburbanization from 2007. In contrast to three other metropolitan circles, the Hefei and Suxichang metropolitan circles experienced more variations in urban expansion patterns over the 20-year period, shifting from internal infilling to external suburbanization.
- (3)
- Urban expansion in the YRDUA was not consistent with its urban non-agricultural population growth, though this pattern was gradually alleviated overall. The megacity of Shanghai exhibited stronger coordination between urban expansion and urban non-agricultural population growth during the study period. By contrast, the Nanjing metropolitan circle experienced urban built-up land stress and thus could not meet needs for non-agricultural population growth over the 20-year period.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Weng, Q. A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar]
- Xu, X.; Min, X. Quantifying spatiotemporal patterns of urban expansion in China using remote sensing data. Cities 2013, 35, 104–113. [Google Scholar] [CrossRef]
- Bai, X.; Shi, P.; Liu, Y. Society: Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- He, C.; Gao, B.; Huang, Q.; Ma, Q.; Dou, Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, S.; Du, J. A map spectrum-based spatiotemporal clustering method for GDP variation pattern analysis using nighttime light images of the Wuhan urban agglomeration. ISPRS Int. J. Geo-Inf. 2017, 6, 160. [Google Scholar] [CrossRef]
- Faisal, K.; Shaker, A.; Habbani, S. Modeling the relationship between the gross domestic product and built-up area using remote sensing and GIS data: A case study of seven major cities in Canada. ISPRS Int. J. Geo-Inf. 2016, 5, 23. [Google Scholar] [CrossRef]
- Ju, Y.; Dronova, I.; Ma, Q.; Zhang, X. Analysis of urbanization dynamics in mainland China using pixel-based night-time light trajectories from 1992 to 2013. Int. J. Remote Sens. 2017, 38, 6047–6072. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Drivers of urban growth in the Kathmandu Valley, Nepal: Examining the efficacy of the analytic hierarchy process. Appl. Geogr. 2010, 30, 70–83. [Google Scholar] [CrossRef]
- Moghadam, H.S.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Sun, W.; Du, B.; Xiong, S. Quantifying sub-pixel surface water coverage in urban environments using low-albedo fraction from Landsat imagery. Remote Sens. 2017, 9, 428. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Kuang, W. Improving fractional impervious surface mapping performance through combination of DMSP-OLS and MODIS NDVI data. Remote Sens. 2017, 9, 375. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Ai, B.; Li, X.; Shi, Q. A normalized urban areas composite index (NUACI) based on combination of DMSP-OLS and MODIS for mapping impervious surface area. Remote Sens. 2015, 7, 17168–17189. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Zhu, Y.; Ge, Y.; Wu, Y. A likelihood-based spatial statistical transformation model (LBSSTM) of regional economic development using DMSP/OLS time series and nighttime light imagery. Spat. Stat. 2017, 21, 421–439. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, Y.; Zhao, G. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels. Sustainability 2017, 9, 305. [Google Scholar] [CrossRef]
- Cao, X.; Wang, J.; Chen, J.; Shi, F. Spatialization of electricity consumption of China using saturation-corrected DMSP-OLS data. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 193–200. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries. Energy 2016, 100, 177–189. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Wang, C.; Ni, Y.; Ma, R. Assessing light pollution in China based on nighttime light imagery. Remote Sens. 2017, 9, 135. [Google Scholar] [CrossRef]
- Tripathi, B.R.; Tiwari, V.; Pandey, V.; Elvidge, C.; Rawat, J.-S.; Sharma, M.; Pravasi, R.; Kumar, P. Estimation of urban population dynamics using DMSP-OLS night-time lights time series sensors data. IEEE Sens. J. 2017, 17, 1013–1020. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Li, Y.; Gao, B. A simulation study on the urban population of China based on nighttime light data acquired from DMSP/OLS. Sustainability 2016, 8, 521. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Li, J.; Chen, J.; Pan, Y.; Li, J.; Zhuo, L.; Ichinose, T. Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data. Chin. Sci. Bull. 2006, 51, 1614–1620. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 2067–2088. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C. Urbanization and the thermal environment of Chinese and US-American cities. Sci. Total Environ. 2017, 589, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Weng, Q. Spatiotemporally enhancing time-series DMSP/OLS nighttime light imagery for assessing large-scale urban dynamics. ISPRS J. Photogramm. Remote Sens. 2017, 128, 1–15. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef]
- Tan, M. Urban growth and rural transition in China based on DMSP/OLS nighttime light data. Sustainability 2015, 7, 8768–8781. [Google Scholar] [CrossRef]
- Yi, K.; Tani, H.; Li, Q.; Zhang, J.; Guo, M.; Bao, Y.; Wang, X.; Li, J. Mapping and evaluating the urbanization process in northeast China using DMSP/OLS nighttime light data. Sensors 2014, 14, 3207–3226. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, L.; Weng, Q.; Xie, Y.; Guo, H. Monitoring urban dynamics in the southeast USA using time-series DMSP/OLS nightlight imagery. Remote Sens. 2016, 8, 578. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Dou, Y. Similarities and differences of city-size distributions in three main urban agglomerations of China from 1992 to 2015: A comparative study based on nighttime light data. J. Geogr. Sci. 2017, 27, 533–545. [Google Scholar] [CrossRef]
- Huang, Q.; He, C.; Gao, B.; Yang, Y.; Liu, Z.; Zhao, Y.; Dou, Y. Detecting the 20 year city-size dynamics in China with a rank clock approach and DMSP/OLS nighttime data. Landsc. Urban Plan. 2015, 137, 138–148. [Google Scholar] [CrossRef]
- Zou, Y.; Peng, H.; Liu, G.; Yang, K.; Xie, Y.; Weng, Q. Monitoring urban clusters expansion in the middle reaches of the Yangtze River, China, using time-series nighttime light images. Remote Sens. 2017, 9, 1007. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, M. Spatial characteristics of urban agglomeration in the middle reaches of Yangtze River using MODIS data and DMSP/OLS nighttime light data. Mod. Urban Res. 2017, 4, 14–20. [Google Scholar]
- Wang, Z.; Yang, S.; Wang, S.; Shen, Y. Monitoring evolving urban cluster systems using DMSP/OLS nighttime light data: A case study of the Yangtze River Delta region, China. J. Appl. Remote Sens. 2017, 11, 046029. [Google Scholar] [CrossRef]
- Wang, R.; Wan, B.; Guo, Q.; Hu, M.; Zhou, S. Mapping regional urban extent using NPP-VIIRS DNB and MODIS NDVI data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, C. The integrated use of DMSP-OLS nighttime light and MODIS data for monitoring large-scale impervious surface dynamics: A case study in the Yangtze River Delta. Remote Sens. 2014, 6, 9359–9378. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP operational Linescan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Sutton, P. Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Chen, J.; Zhuo, L.; Shi, P.-J.; Toshiaki, I. The study on urbanization process in China based on DMSP/OLS data: Development of a light index for urbanization level estimation. J. Remote Sens. 2003, 7, 168–175. [Google Scholar]
- Li, X.; Yeh, A.G.-O. Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landsc. Urban Plan. 2004, 69, 335–354. [Google Scholar] [CrossRef]
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, R.; Yu, W.; Liu, Y.; Lin, M.; Wang, M. Characterizing factors associated with built-up land expansion in urban and non-urban areas from a morphological perspective. Sustainability 2017, 9, 1411. [Google Scholar] [CrossRef]
- Haijun, W.; Chang, X.; Anqi, Z. Space syntax expand intensity index and its applications toquantitative analysis of urban expansion. Acta Geogr. Sin. 2016, 71, 1302–1314. [Google Scholar]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
Data Type | Year | Format | Data Source |
---|---|---|---|
DMSP/OLS NTL data | 1993, 1997, 2002, 2007, 2012 | GeoTiff | http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html |
Built-up area census data | 1993, 1997, 2002, 2007, 2012 | Excel | http://data.cnki.net/yearbook/ |
Urban non-agricultural population data | 1993, 1997, 2002, 2007, 2012 | Excel | http://data.cnki.net/yearbook/ |
Administrative boundary data | 1993, 1997, 2002, 2007, 2012 | Shp | http://www.ngcc.cn |
The YRDUA | Bcis of Five Years | ||||
---|---|---|---|---|---|
1993 | 1997 | 2002 | 2007 | 2012 | |
Megacity of Shanghai | 0.519 | 0.541 | 0.483 | 0.380 | 0.380 |
Nanjing metropolitan circle | 0.291 | 0.297 | 0.237 | 0.236 | 0.224 |
Hangzhou metropolitan circle | 0.307 | 0.231 | 0.207 | 0.17 | 0.167 |
Hefei metropolitan circle | 0.316 | 0.236 | 0.239 | 0.211 | 0.162 |
Suxichang metropolitan circle | 0.240 | 0.202 | 0.164 | 0.166 | 0.159 |
Ningbo metropolitan circle | 0.216 | 0.212 | 0.164 | 0.164 | 0.161 |
1993–1997 | 1998–2002 | 2003–2007 | 2008–2012 | |
---|---|---|---|---|
The whole YRDUA | 2.18 | 2.66 | 1.40 | 1.83 |
Megacity of Shanghai | 6.07 | 3.82 | 3.05 | 1.78 |
Nanjing metropolitan circle | 0.73 | 3.30 | 0.62 | 1.05 |
Hangzhou metropolitan circle | 2.64 | 3.65 | 1.95 | 1.35 |
Hefei metropolitan circle | 4.63 | 2.69 | 1.74 | 5.93 |
Suxichang metropolitan circle | 5.14 | 2.53 | 2.41 | 0.80 |
Ningbo metropolitan circle | 1.59 | 3.89 | 4.56 | 1.45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Zhang, M.; Sun, W.; Li, W. Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012. ISPRS Int. J. Geo-Inf. 2018, 7, 52. https://doi.org/10.3390/ijgi7020052
Lu H, Zhang M, Sun W, Li W. Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012. ISPRS International Journal of Geo-Information. 2018; 7(2):52. https://doi.org/10.3390/ijgi7020052
Chicago/Turabian StyleLu, Huimin, Meiliang Zhang, Weiwei Sun, and Weiyue Li. 2018. "Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012" ISPRS International Journal of Geo-Information 7, no. 2: 52. https://doi.org/10.3390/ijgi7020052
APA StyleLu, H., Zhang, M., Sun, W., & Li, W. (2018). Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012. ISPRS International Journal of Geo-Information, 7(2), 52. https://doi.org/10.3390/ijgi7020052