Targeting the Sirtuin–1/PPAR–Gamma Axis, RAGE/HMGB1/NF-κB Signaling, and the Mitochondrial Functions by Canagliflozin Augments the Protective Effects of Levodopa/Carbidopa in Rotenone-Induced Parkinson’s Disease
<p>An illustrative representation of the experimental protocol of the study.</p> "> Figure 2
<p>The open field test apparatus.</p> "> Figure 3
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the pole test (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 4
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the open field test (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 5
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the rotarod test (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 6
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the striatal dopamine levels (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 7
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the levels of Nrf2 and the redox state of the striatal tissues (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 8
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the levels of toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and nuclear factor kappa B (NF-kB) p65 in the striatal tissues (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 9
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the striatal tissue levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor (PPAR)-gamma (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 10
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the striatal tissue levels of HMGB1 and receptors of advanced glycation end products (RAGE) (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 11
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the mitochondrial functions (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 12
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the striatal tissue levels of AMPK and mTOR (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 13
<p>Effect of levodopa/carbidopa with or without canagliflozin on rotenone-induced changes in the autophagy markers in the striatal tissues (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> "> Figure 14
<p>Hematoxylin- and eosin-stained sections from the hippocampus of: (<b>A</b>) the control group demonstrating multiple compact layers of pyramidal cells with polygonal cell bodies and vesicular nuclei (thin arrows); (<b>B</b>) rotenone-injected group showing significant diminution of the thickness of the pyramidal cell layer, with many cells showing apoptotic changes (thin arrows), diffuse inflammatory cellular infiltration (thick arrow), and marked vascular congestion (arrow head); (<b>C</b>) rotenone-injected group treated with levodopa/carbidopa and (<b>D</b>) rotenone-injected group treated with canagliflozin exhibiting moderate decline in the number of cells that showed apoptotic changes (thick arrows) with a significantly increased number of normal cells with vesicular nuclei and prominent nucleoli (thin arrows); (<b>E</b>) rotenone-injected group treated with levodopa/carbidopa concomitantly with canagliflozin exhibiting marked increase in the number of normal neurons with vesicular nuclei (thin arrows), with scanty dystrophic apoptotic neurons in between (thick arrow); (<b>F</b>) the average thickness of the different areas of the hippocampus (Mean ± SD). ROT (rotenone); CNG (canagliflozin); DG (dentate gyrus).</p> "> Figure 15
<p>Hematoxylin- and eosin-stained sections from the substantia nigra of (<b>A</b>) the control group demonstrating the dopaminergic neurons with vesicular nuclei and basophilic cytoplasm (thin arrows); (<b>B</b>) rotenone-injected group showing massive neurodegeneration. The neurons appear small and shrunken (thick arrows) with many neurons showing irregular outlines, cytoplasmic shrinkage, and pyknotic darkly stained nuclei (arrow heads) with perineuronal vacuolations (thin arrows); (<b>C</b>) rotenone-injected group treated with levodopa/carbidopa; and (<b>D</b>) rotenone-injected group treated with canagliflozin exhibiting a moderate decline in the number of the degenerated shrunken cells (thick arrows) and the nuclei showing pyknotic changes (arrow head) with significantly increased number of the normal dopaminergic neurons with vesicular nuclei (thin arrows); (<b>E</b>) rotenone-injected group treated with levodopa/carbidopa concomitantly with canagliflozin exhibiting significant increase in the number of the normal dopaminergic neurons with vesicular nuclei (thin arrows) associated with scanty small shrunken neurons in-between (thick arrow).</p> "> Figure 16
<p>The immunohistochemical staining of tyrosine hydroxylase (TH) (×40) in the tissue sections of the substantia nigra of: (<b>A</b>) the control group exhibiting strong positive TH immunostaining; (<b>B</b>) rotenone-injected group showing minimal positive TH immunostaining; (<b>C</b>) rotenone-injected group treated with levodopa/carbidopa; and (<b>D</b>) rotenone-injected group treated with canagliflozin demonstrating moderately positive TH immunostaining; (<b>E</b>) rotenone-injected group treated with levodopa/carbidopa concomitantly with canagliflozin revealing strong positive TH immunostaining; (<b>F</b>) the percentage of positive immunostaining of TH in the substantia nigra (Mean ± SD). <sup>a</sup> Significant compared to the control group (<span class="html-italic">p</span>-value less than 0.05); <sup>b</sup> significant relative to rotenone group (<span class="html-italic">p</span>-value less than 0.05); <sup>c</sup> significant relative to rotenone + levodopa/carbidopa group (<span class="html-italic">p</span>-value less than 0.05); <sup>d</sup> significant relative to rotenone + canagliflozin group (<span class="html-italic">p</span>-value less than 0.05). ROT (rotenone); CNG (canagliflozin).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Chemicals, Reagents, and Drugs
2.3. Animals
2.4. Rotenone-Induced Parkinson’s Disease Model
2.5. Grouping of Animals
2.6. Determination of the Changes in Behavior of the Studied Groups
2.7. Specimens’ Collection and Processing
2.8. Assessment of Dopamine Levels in the Striatal Tissues
2.9. Determination of the Effect of Different Treatments on the Nuclear Factor (Erythroid-Derived 2)-Like 2 (Nrf2) Content and the Redox State of the Striatal Tissues
2.10. Quantification of the Levels of Toll-like Receptor 4 (TLR4), Tumor Necrosis Factor Alpha (TNF-α), Interleukin 1 Beta (IL-1β), and Nuclear Factor Kappa B (NF-kB) p65 in the Striatal Tissues
2.11. Assessment of the Striatal Tissue Levels of SIRT1 and Peroxisome Proliferator-Activated Receptor (PPAR)-Gamma in the Studied Groups
2.12. Determination of the Striatal Tissue Levels of HMGB1 and Receptors of Advanced Glycation End Products (RAGE) in the Studied Groups
2.13. Quantification of the Striatal Tissue Levels of Mitochondrial ATP, Mitochondrial Complex-I Activity, and Mitochondrial Transmembrane Potential in the Studied Groups
2.14. Assessment of the Striatal Tissue Levels of AMPK and mTOR in the Studied Groups
2.15. Determination of the Effect of the Different Treatments on the Autophagy State of the Striatal Tissues
2.16. Assessment of the Effect of Canagliflozin with or without Levodopa/Carbidopa on the Histopathological Changes of the Brain Tissues Induced by Rotenone Administration
2.17. Detection and Quantification of the Changes in Tyrosine Hydroxylase (TH) Immunoexpression in the Substantia Nigra
2.18. Statistical Assessment of the Obtained Data
3. Results
3.1. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Behavioral Changes Induced by Rotenone Administration
3.2. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Changes in the Striatal Dopamine Levels Induced by Rotenone Administration
3.3. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Changes in the Levels of Nrf2 and the Redox State of the Striatal Tissues Induced by Rotenone Administration
3.4. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Perturbations in the Striatal Tissue Levels of TLR4, TNF-α, IL-1β, and NF-kB (p65) Induced by Rotenone Administration
3.5. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Perturbations of the Levels of SIRT1 and PPAR-Gamma in the Striatal Tissues Elicited by Rotenone Administration
3.6. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Changes of the Levels of HMGB1 and RAGE in the Striatal Tissues Elicited by Rotenone Injection
3.7. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Perturbations in the Levels of Mitochondrial ATP, Mitochondrial Complex-I Activity, and Mitochondrial Transmembrane Potential in the Striatal Tissues Created by Rotenone Administration
3.8. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Changes of the Levels of AMPK and mTOR in the Striatal Tissues Elicited by Rotenone Administration
3.9. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Perturbations in the Autophagy Markers in the Striatal Tissues Induced by Rotenone Administration
3.10. Effect of Canagliflozin with or without Levodopa/Carbidopa on the Histomorphic Changes in the Brain Tissues Induced by Rotenone Administration
3.11. Effect of Administration of Canagliflozin with or without Levodopa/Carbidopa on TH Immunostaining in the Substantia Nigra of Rotenone-Treated Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickson, D.W. Neuropathology of Parkinson disease. Park. Relat Disord. 2018, 46, S30–S33. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y. Update on Parkinson’s Disease Rehabilitation. Brain Neurorehabil. 2022, 15, e15. [Google Scholar] [CrossRef] [PubMed]
- Kabel, A.M.; Omar, M.S.; Alhadhrami, A.; Alharthi, S.S.; Alrobaian, M.M. Linagliptin potentiates the effect of l-dopa on the behavioural, biochemical and immunohistochemical changes in experimentally-induced Parkinsonism: Role of toll-like receptor 4, TGF-β1, NF-κB and glucagon-like peptide 1. Physiol. Behav. 2018, 188, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Adam, H.; Gopinath, S.C.B.; Md Arshad, M.K.; Adam, T.; Parmin, N.A.; Husein, I.; Hashim, U. An update on pathogenesis and clinical scenario for Parkinson’s disease: Diagnosis and treatment. 3 Biotech 2023, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Dong-Chen, X.; Yong, C.; Yang, X.; Chen-Yu, S.; Li-Hua, P. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target Ther. 2023, 8, 73. [Google Scholar] [CrossRef]
- Khan, E.; Hasan, I.; Haque, M.E. Parkinson’s Disease: Exploring Different Animal Model Systems. Int. J. Mol. Sci. 2023, 24, 9088. [Google Scholar] [CrossRef]
- Dovonou, A.; Bolduc, C.; Soto Linan, V.; Gora, C.; Peralta, M.R., III; Lévesque, M. Animal models of Parkinson’s disease: Bridging the gap between disease hallmarks and research questions. Transl. Neurodegener. 2023, 12, 36. [Google Scholar] [CrossRef]
- Ibarra-Gutiérrez, M.T.; Serrano-García, N.; Orozco-Ibarra, M. Rotenone-Induced Model of Parkinson’s Disease: Beyond Mitochondrial Complex I Inhibition. Mol. Neurobiol. 2023, 60, 1929–1948. [Google Scholar] [CrossRef]
- Zou, L.; Che, Z.; Ding, K.; Zhang, C.; Liu, X.; Wang, L.; Li, A.; Zhou, J. JAC4 Alleviates Rotenone-Induced Parkinson’s Disease through the Inactivation of the NLRP3 Signal Pathway. Antioxidants 2023, 12, 1134. [Google Scholar] [CrossRef]
- Van Laar, A.D.; Webb, K.R.; Keeney, M.T.; Van Laar, V.S.; Zharikov, A.; Burton, E.A.; Hastings, T.G.; Glajch, K.E.; Hirst, W.D.; Greenamyre, J.T.; et al. Transient exposure to rotenone causes degeneration and progressive parkinsonian motor deficits, neuroinflammation, and synucleinopathy. npj Park. Dis. 2023, 9, 121. [Google Scholar] [CrossRef]
- Chernivec, E.; Cooper, J.; Naylor, K. Exploring the Effect of Rotenone-A Known Inducer of Parkinson’s Disease-On Mitochondrial Dynamics in Dictyostelium discoideum. Cells 2018, 7, 201. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mahur, P.; Muthukumaran, J.; Singh, A.K.; Jain, M. Shedding light on structure, function and regulation of human sirtuins: A comprehensive review. 3 Biotech 2023, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E. SIRT1 pathway in Parkinson’s disease: A faraway snapshot but so close. Inflammopharmacology 2023, 31, 37–56. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.; Wang, X.X.; Truong, D.; Wu, Y.C. The Critical Role of SIRT1 in Parkinson’s Disease: Mechanism and Therapeutic Considerations. Aging Dis. 2020, 11, 1608–1622. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Mittal, A.K.; Kalonia, H.; Madan, S.; Ghosh, S.; Sinha, J.K.; Rajput, S.K. SIRT1 Promotes Neuronal Fortification in Neurodegenerative Diseases through Attenuation of Pathological Hallmarks and Enhancement of Cellular Lifespan. Curr. Neuropharmacol. 2021, 19, 1019–1037. [Google Scholar] [CrossRef]
- Jiao, F.; Gong, Z. The Beneficial Roles of SIRT1 in Neuroinflammation-Related Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 6782872. [Google Scholar] [CrossRef]
- Chen, R.; Kang, R.; Tang, D. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 2022, 54, 91–102. [Google Scholar] [CrossRef]
- Razali, K.; Mohamed, W.M.Y. High-Mobility Group Box 1 (HMGB1) Protein in Parkinson’s Disease Research: A 10-Year Bibliometric Analysis. J. Integr. Neurosci. 2023, 22, 87. [Google Scholar] [CrossRef]
- Hou, X.; Watzlawik, J.O.; Fiesel, F.C.; Springer, W. Autophagy in Parkinson’s Disease. J. Mol. Biol. 2020, 432, 2651–2672. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, R.; Su, Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson’s Disease. Cell. Mol. Neurobiol. 2023, 43, 47–58. [Google Scholar] [CrossRef]
- Tambasco, N.; Romoli, M.; Calabresi, P. Levodopa in Parkinson’s Disease: Current Status and Future Developments. Curr. Neuropharmacol. 2018, 16, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Idowu, O.K.; Dosumu, O.O.; Boboye, A.S.; Oremosu, A.A.; Mohammed, A.A. Lauric acid with or without levodopa ameliorates Parkinsonism in genetically modified model of Drosophila melanogaster via the oxidative-inflammatory-apoptotic pathway. Brain Behav. 2024, 14, e70001. [Google Scholar] [CrossRef] [PubMed]
- Urso, D.; Chaudhuri, K.R.; Qamar, M.A.; Jenner, P. Improving the Delivery of Levodopa in Parkinson’s Disease: A Review of Approved and Emerging Therapies. CNS Drugs 2020, 34, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Bisaglia, M. Oxidative Stress and Neuroinflammation in Parkinson’s Disease: The Role of Dopamine Oxidation Products. Antioxidants 2023, 12, 955. [Google Scholar] [CrossRef] [PubMed]
- Jasleen, B.; Vishal, G.K.; Sameera, M.; Fahad, M.; Brendan, O.; Deion, S.; Pemminati, S. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Benefits Versus Risk. Cureus 2023, 15, e33939. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Lin, K.D.; Hsieh, C.F.; Wang, J.Y. SGLT2 Inhibitor Canagliflozin Alleviates High Glucose-Induced Inflammatory Toxicity in BV-2 Microglia. Biomedicines 2023, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, G.D.; Ababei, D.C.; Solcan, C.; Bild, V.; Ciobica, A.; Beschea Chiriac, S.I.; Ciobanu, L.M.; Tamba, B.-I. Preclinical Studies of Canagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor, and Donepezil Combined Therapy in Alzheimer’s Disease. Pharmaceuticals 2023, 16, 1620. [Google Scholar] [CrossRef]
- Alabi, A.O.; Ajayi, A.M.; Ben-Azu, B.; Bakre, A.G.; Umukoro, S. Methyl jasmonate abrogates rotenone-induced parkinsonian-like symptoms through inhibition of oxidative stress, release of pro-inflammatory cytokines, and down-regulation of immnopositive cells of NF-κB and α-synuclein expressions in mice. Neurotoxicology 2019, 74, 172–183. [Google Scholar] [CrossRef]
- Tammimäki, A.; Aonurm-Helm, A.; Männistö, P.T. Delayed O-methylation of l-DOPA in MB-COMT-deficient mice after oral administration of l-DOPA and carbidopa. Xenobiotica 2018, 48, 325–331. [Google Scholar] [CrossRef]
- Du, S.; Shi, H.; Xiong, L.; Wang, P.; Shi, Y. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front. Endocrinol. 2022, 13, 1011669. [Google Scholar] [CrossRef]
- Glajch, K.E.; Fleming, S.M.; Surmeier, D.J.; Osten, P. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease. Behav. Brain Res. 2012, 230, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Ishola, I.O.; Akataobi, O.E.; Alade, A.A.; Adeyemi, O.O. Glimepiride prevents paraquat-induced Parkinsonism in mice: Involvement of oxidative stress and neuroinflammation. Fundam. Clin. Pharmacol. 2019, 33, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Smolinsky, A.N.; Bergner, C.L.; LaPorte, J.L.; Kalueff, A.V. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In Mood and Anxiety Related Phenotypes in Mice; Characterization Using Behavioral Tests; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–36. [Google Scholar] [CrossRef]
- Shirgadwar, S.M.; Kumar, R.; Preeti, K.; Khatri, D.K.; Singh, S.B. Neuroprotective Effect of Phloretin in Rotenone-Induced Mice Model of Parkinson’s Disease: Modulating mTOR-NRF2-p62 Mediated Autophagy-Oxidative Stress Crosstalk. J. Alzheimers Dis. 2023, 94, S109–S124. [Google Scholar] [CrossRef] [PubMed]
- Bentea, E.; De Pauw, L.; Verbruggen, L.; Winfrey, L.C.; Deneyer, L.; Moore, C.; Albertini, G.; Sato, H.; Van Eeckhaut, A.; Meshul, C.K.; et al. Aged xCT-Deficient Mice Are Less Susceptible for Lactacystin-, but Not 1-Methyl-4-Phenyl-1,2,3,6- Tetrahydropyridine-, Induced Degeneration of the Nigrostriatal Pathway. Front. Cell Neurosci. 2021, 15, 796635. [Google Scholar] [CrossRef] [PubMed]
- Nuhu, F.; Gordon, A.; Sturmey, R.; Seymour, A.M.; Bhandari, S. Measurement of Glutathione as a Tool for Oxidative Stress Studies by High Performance Liquid Chromatography. Molecules 2020, 25, 4196. [Google Scholar] [CrossRef]
- Liao, P.C.; Bergamini, C.; Fato, R.; Pon, L.A.; Pallotti, F. Isolation of mitochondria from cells and tissues. Methods Cell Biol. 2020, 155, 3–31. [Google Scholar] [CrossRef]
- Maity, P.; Bindu, S.; Dey, S.; Goyal, M.; Alam, A.; Pal, C.; Mitra, K.; Bandyopadhyay, U. Indomethacin, a non-steroidal anti-inflammatory drug, develops gastropathy by inducing reactive oxygen species-mediated mitochondrial pathology and associated apoptosis in gastric mucosa: A novel role of mitochondrial aconitase oxidation. J. Biol. Chem. 2009, 284, 3058–3068. [Google Scholar] [CrossRef]
- Habib, C.N.; Mohamed, M.R.; Tadros, M.G.; Tolba, M.F.; Menze, E.T.; Masoud, S.I. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats. Eur. J. Pharmacol. 2022, 914, 174573. [Google Scholar] [CrossRef]
- Latif, S.; Jahangeer, M.; Maknoon Razia, D.; Ashiq, M.; Ghaffar, A.; Akram, M.; Allam, A.E.; Bouyahya, A.; Garipova, L.; Shariati, M.A.; et al. Dopamine in Parkinson’s disease. Clin. Chim. Acta 2021, 522, 114–126. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Zhang, J.S.; Xiang, J.; Yu, Z.H.; Zhang, W.; Cai, M.; Li, X.-T.; Wu, T.; Li, W.-W.; Cai, D.-F. Subcutaneous rotenone rat model of Parkinson’s disease: Dose exploration study. Brain Res. 2017, 1655, 104–113. [Google Scholar] [CrossRef]
- Jung-Kc, K.; Tristán-Noguero, A.; Altankhuyag, A.; Piñol Belenguer, D.; Prestegård, K.S.; Fernandez-Carasa, I.; Baldeschi, A.C.; Bondarenko, M.S.; García-Cazorla, A.; Consiglio, A.; et al. Tetrahydrobiopterin (BH4) treatment stabilizes tyrosine hydroxylase: Rescue of tyrosine hydroxylase deficiency phenotypes in human neurons and in a knock-in mouse model. J. Inherit. Metab. Dis. 2024, 47, 494–508. [Google Scholar] [CrossRef] [PubMed]
- Thomas Broome, S.; Castorina, A. Systemic Rotenone Administration Causes Extra-Nigral Alterations in C57BL/6 Mice. Biomedicines 2022, 10, 3174. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.J.; Wang, T.J.; Chen, S.D.; Lin, K.L.; Liou, C.W.; Lan, M.Y.; Chuang, Y.-C.; Chuang, J.-H.; Wang, P.-W.; Lee, J.-J.; et al. Two Birds One Stone: The Neuroprotective Effect of Antidiabetic Agents on Parkinson Disease-Focus on Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors. Antioxidants 2021, 10, 1935. [Google Scholar] [CrossRef] [PubMed]
- Sherer, T.B.; Betarbet, R.; Testa, C.M.; Seo, B.B.; Richardson, J.R.; Kim, J.H.; Miller, G.W.; Yagi, T.; Matsuno-Yagi, A.; Greenamyre, J.T. Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. 2003, 23, 10756–10764. [Google Scholar] [CrossRef]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Zhu, F.; He, H.; Fan, L.; Ma, C.; Xu, Z.; Xue, Y.; Wang, Y.; Zhang, C.; Zhou, G. Blockade of CXCR2 suppresses proinflammatory activities of neutrophils in ulcerative colitis. Am. J. Transl. Res. 2020, 12, 5237–5251. [Google Scholar]
- Hasan, R.; Lasker, S.; Hasan, A.; Zerin, F.; Zamila, M.; Chowdhury, F.I.; Nayan, S.I.; Rahman, M.M.; Khan, F.; Subhan, N.; et al. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways. Sci. Rep. 2020, 10, 14459. [Google Scholar] [CrossRef]
- Wei, D.; Liao, L.; Wang, H.; Zhang, W.; Wang, T.; Xu, Z. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci. 2020, 247, 117414. [Google Scholar] [CrossRef]
- Hassanein, E.H.M.; Saleh, F.M.; Ali, F.E.M.; Rashwan, E.K.; Atwa, A.M.; Abd El-Ghafar, O.A.M. Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals. Immunopharmacol. Immunotoxicol. 2023, 45, 304–316. [Google Scholar] [CrossRef]
- Ma, S.; He, L.L.; Zhang, G.R.; Zuo, Q.J.; Wang, Z.L.; Zhai, J.L.; Zhang, T.-T.; Wang, Y.; Ma, H.-J.; Guo, Y.-F. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 945–962. [Google Scholar] [CrossRef]
- Chakkittukandiyil, A.; Sajini, D.V.; Karuppaiah, A.; Selvaraj, D. The principal molecular mechanisms behind the activation of Keap1/Nrf2/ARE pathway leading to neuroprotective action in Parkinson’s disease. Neurochem. Int. 2022, 156, 105325. [Google Scholar] [CrossRef] [PubMed]
- Kouli, A.; Spindler, L.R.B.; Fryer, T.D.; Hong, Y.T.; Malpetti, M.; Aigbirhio, F.I.; White, S.R.; Camacho, M.; O’Brien, J.T.; Williams-Gray, C.H. Neuroinflammation is linked to dementia risk in Parkinson’s disease. Brain 2024, 147, 923–935. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.M.; Banerjee, A.; Ghosal, A.; Layek, B. Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 3995. [Google Scholar] [CrossRef] [PubMed]
- Azar, Y.O.; Badawi, G.A.; Zaki, H.F.; Ibrahim, S.M. Agmatine-mediated inhibition of NMDA receptor expression and amelioration of dyskinesia via activation of Nrf2 and suppression of HMGB1/RAGE/TLR4/MYD88/NF-κB signaling cascade in rotenone lesioned rats. Life Sci. 2022, 311, 121049. [Google Scholar] [CrossRef] [PubMed]
- Soraci, L.; Gambuzza, M.E.; Biscetti, L.; Laganà, P.; Lo Russo, C.; Buda, A.; Barresi, G.; Corsonello, A.; Lattanzio, F.; Lorello, G.; et al. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: Mechanisms and therapeutic implications. J. Neurol. 2023, 270, 1346–1360. [Google Scholar] [CrossRef]
- Zhang, G.; Ghosh, S. Toll-like receptor-mediated NF-kappaB activation: A phylogenetically conserved paradigm in innate immunity. J. Clin. Investig. 2001, 107, 13–19. [Google Scholar] [CrossRef]
- Uthman, L.; Kuschma, M.; Römer, G.; Boomsma, M.; Kessler, J.; Hermanides, J.; Hollmann, M.W.; Preckel, B.; Zuurbier, C.J.; Weber, N.C. Novel Anti-inflammatory Effects of Canagliflozin Involving Hexokinase II in Lipopolysaccharide-Stimulated Human Coronary Artery Endothelial Cells. Cardiovasc. Drugs Ther. 2021, 35, 1083–1094. [Google Scholar] [CrossRef]
- Althagafy, H.S.; Ali, F.E.M.; Hassanein, E.H.M.; Mohammedsaleh, Z.M.; Kotb El-Sayed, M.I.; Atwa, A.M.; Sayed, A.A.; Soubh, A. Canagliflozin ameliorates ulcerative colitis via regulation of TLR4/MAPK/NF-κB and Nrf2/PPAR-γ/SIRT1 signaling pathways. Eur. J. Pharmacol. 2023, 960, 176166. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; Li, Y.; Tang, Q.; Wu, T.; Chen, L.; Pu, S.; Zhao, Y.; Zhang, G.; Huang, C.; et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte 2020, 9, 484–494. [Google Scholar] [CrossRef]
- Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23, 2369–2380. [Google Scholar] [CrossRef]
- Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013, 25, 1939–1948. [Google Scholar] [CrossRef]
- Planavila, A.; Iglesias, R.; Giralt, M.; Villarroya, F. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 2011, 90, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Heming, M.; Gran, S.; Jauch, S.L.; Fischer-Riepe, L.; Russo, A.; Klotz, L.; Hermann, S.; Schäfers, M.; Roth, J.; Barczyk-Kahlert, K. Peroxisome Proliferator-Activated Receptor-γ Modulates the Response of Macrophages to Lipopolysaccharide and Glucocorticoids. Front. Immunol. 2018, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Breidert, T.; Callebert, J.; Heneka, M.T.; Landreth, G.; Launay, J.M.; Hirsch, E.C. Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem. 2002, 82, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Florance, I.; Cordani, M.; Pashootan, P.; Moosavi, M.A.; Zarrabi, A.; Chandrasekaran, N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol. Life Sci. 2024, 81, 184. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.R.; Jo, Y.H.; Kim, J.; Shin, Y.; Kim, S.S.; Choi, T.G. Roles of Autophagy in Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 3289. [Google Scholar] [CrossRef]
- Kim, D.K.; Lim, H.S.; Kawasaki, I.; Shim, Y.H.; Vaikath, N.N.; El-Agnaf, O.M.; Lee, H.-J.; Lee, S.-J. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy 2016, 12, 1849–1863. [Google Scholar] [CrossRef]
- Kang, S.Y.; Lee, S.B.; Kim, H.J.; Kim, H.T.; Yang, H.O.; Jang, W. Autophagic modulation by rosuvastatin prevents rotenone-induced neurotoxicity in an in vitro model of Parkinson’s disease. Neurosci. Lett. 2017, 642, 20–26. [Google Scholar] [CrossRef]
- El-Sherbeeny, N.A.; Soliman, N.; Youssef, A.M.; Abd El-Fadeal, N.M.; El-Abaseri, T.B.; Hashish, A.A.; Abdelbasset, W.K.; Batiha, G.E.-S.; Zaitone, S.A. The protective effect of biochanin A against rotenone-induced neurotoxicity in mice involves enhancing of PI3K/Akt/mTOR signaling and beclin-1 production. Ecotoxicol. Environ. Saf. 2020, 205, 111344. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Lu, Y.; Tian, H.; Duan, C.; Lu, L.; Gao, G.; Wu, X.; Wang, X.; Yang, H. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models. Autophagy 2018, 14, 845–861. [Google Scholar] [CrossRef]
- Arab, H.H.; Ashour, A.M.; Alqarni, A.M.; Arafa, E.A.; Kabel, A.M. Camel Milk Mitigates Cyclosporine-Induced Renal Damage in Rats: Targeting p38/ERK/JNK MAPKs, NF-κB, and Matrix Metalloproteinases. Biology 2021, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Hewedy, W.A.; Abdulmalek, S.A.; Ghareeb, D.A.; Habiba, E.S. AMPK-mediated autophagy is involved in the protective effect of canagliflozin in the vitamin D3 plus nicotine calcification model in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 873–888. [Google Scholar] [CrossRef] [PubMed]
- Khedr, L.H.; Eladawy, R.M.; Nassar, N.N.; Saad, M.A.E. Canagliflozin attenuates chronic unpredictable mild stress induced neuroinflammation via modulating AMPK/mTOR autophagic signaling. Neuropharmacology 2023, 223, 109293. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Kitamura, S.; Tsuji, K.; Wada, J. Sodium-Glucose Cotransporter 2 Inhibitors Work as a “Regulator” of Autophagic Activity in Overnutrition Diseases. Front. Pharmacol. 2021, 12, 761842. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, Y.; Zhang, W.; Lu, J.; Chen, Y.; Hao, W.; Zhou, J.; Wang, L.; Xie, W. Canagliflozin Ameliorates NLRP3 Inflammasome-Mediated Inflammation Through Inhibiting NF-κB Signaling and Upregulating Bif-1. Front. Pharmacol. 2022, 13, 820541. [Google Scholar] [CrossRef]
- Kim, D.H. Contrasting views on the role of AMPK in autophagy. BioEssays 2024, 46, e2300211. [Google Scholar] [CrossRef]
- Bogetofte, H.; Alamyar, A.; Blaabjerg, M.; Meyer, M. Levodopa Therapy for Parkinson’s Disease: History, Current Status and Perspectives. CNS Neurol. Disord. Drug Targets 2020, 19, 572–583. [Google Scholar] [CrossRef]
- Smith, J.L.; Ju, J.S.; Saha, B.M.; Racette, B.A.; Fisher, J.S. Levodopa with carbidopa diminishes glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in rat skeletal muscle. J. Appl. Physiol. 2004, 97, 2339–2346. [Google Scholar] [CrossRef]
- Aljuaid, M.; Booth, S.; Hobson, D.E.; Borys, A.; Williams, K.; Katako, A.; Ryner, L.; Goertzen, A.L.; Ko, J.H. Blood Flow and Glucose Metabolism Dissociation in the Putamen Is Predictive of Levodopa Induced Dyskinesia in Parkinson’s Disease Patients. Front. Neurol. 2019, 10, 1217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkady, M.A.; Kabel, A.M.; Dawood, L.M.; Helal, A.I.; Borg, H.M.; Atia, H.A.; Sabry, N.M.; Moustafa, N.M.; Arafa, E.-S.A.; Alsufyani, S.E.; et al. Targeting the Sirtuin–1/PPAR–Gamma Axis, RAGE/HMGB1/NF-κB Signaling, and the Mitochondrial Functions by Canagliflozin Augments the Protective Effects of Levodopa/Carbidopa in Rotenone-Induced Parkinson’s Disease. Medicina 2024, 60, 1682. https://doi.org/10.3390/medicina60101682
Elkady MA, Kabel AM, Dawood LM, Helal AI, Borg HM, Atia HA, Sabry NM, Moustafa NM, Arafa E-SA, Alsufyani SE, et al. Targeting the Sirtuin–1/PPAR–Gamma Axis, RAGE/HMGB1/NF-κB Signaling, and the Mitochondrial Functions by Canagliflozin Augments the Protective Effects of Levodopa/Carbidopa in Rotenone-Induced Parkinson’s Disease. Medicina. 2024; 60(10):1682. https://doi.org/10.3390/medicina60101682
Chicago/Turabian StyleElkady, Mennatallah A., Ahmed M. Kabel, Lamees M. Dawood, Azza I. Helal, Hany M. Borg, Hanan Abdelmawgoud Atia, Nesreen M. Sabry, Nouran M. Moustafa, El-Shaimaa A. Arafa, Shuruq E. Alsufyani, and et al. 2024. "Targeting the Sirtuin–1/PPAR–Gamma Axis, RAGE/HMGB1/NF-κB Signaling, and the Mitochondrial Functions by Canagliflozin Augments the Protective Effects of Levodopa/Carbidopa in Rotenone-Induced Parkinson’s Disease" Medicina 60, no. 10: 1682. https://doi.org/10.3390/medicina60101682
APA StyleElkady, M. A., Kabel, A. M., Dawood, L. M., Helal, A. I., Borg, H. M., Atia, H. A., Sabry, N. M., Moustafa, N. M., Arafa, E. -S. A., Alsufyani, S. E., & Arab, H. H. (2024). Targeting the Sirtuin–1/PPAR–Gamma Axis, RAGE/HMGB1/NF-κB Signaling, and the Mitochondrial Functions by Canagliflozin Augments the Protective Effects of Levodopa/Carbidopa in Rotenone-Induced Parkinson’s Disease. Medicina, 60(10), 1682. https://doi.org/10.3390/medicina60101682