Pork as a Source of Diverse Viral Foodborne Infections: An Escalating Issue
Abstract
:1. Introduction
2. Pigs as Hosts of Multiple Viruses: The Complexity and Implications of Viral Diversity in Swine
3. Characteristics of the Foodborne Viruses in Pork
3.1. Gastroenteritis-Causing Viruses
3.2. Enterically Transmitted Hepatitis Viruses
3.3. Viruses Replicating in Intestines with Extraintestinal Manifestations
4. Foodborne and Zoonotic Viruses: Occurrence and Distribution in Pork
4.1. Norovirus (NoV)
4.2. Nipah Virus (NiV)
4.3. Hepatitis E Virus (HEV)
4.4. Aichivirus
5. Contamination, Persistence, and Occupational Risks
5.1. Viral Contamination in Pork Production
5.2. Persistence of Foodborne Viruses
5.3. Hygiene Practices and Public Health Measures
5.4. Zoonotic Transmission and Occupational Risks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swiss National Food and Agriculture Organization (FAO) Committee. Livestock Systems: Their Role in the Transformation of Food Systems in the Context of Climate Change; FAO: Bern, Switzerland, 2024. [Google Scholar]
- Ritchie, H.; Roser, M.; Rosado, P. Meat and Dairy Production. Available online: https://ourworldindata.org/meat-production (accessed on 1 October 2024).
- OECD/FAO. OECD-FAO Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (WHO). Viruses in Food: Scientific Advice to Support Risk Management Activities. Available online: https://www.who.int/publications/i/item/9789241563772 (accessed on 12 June 2024).
- Hinrichs, J.B.; Kreitlow, A.; Siekmann, L.; Plötz, M.; Kemper, N.; Abdulmawjood, A. Changes in hepatitis E virus contamination during the production of liver sausage from naturally contaminated pig liver and the potential of individual production parameters to reduce hepatitis E virus contamination in the processing chain. Pathogens 2024, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, F.; Xia, Y.; Zhao, J.J.; Zhu, Y.; Liu, Y.; Qian, Y.; Zou, X. African swine fever virus immunosuppression and virulence-related gene. Curr. Issues Mol. Biol. 2024, 46, 488. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yang, B.; Yuan, X.; Shen, C.; Zhang, D.; Shi, X.; Zhang, T.; Cui, H.; Yang, J.; Chen, X.; et al. Advanced research in porcine reproductive and respiratory syndrome virus co-infection with other pathogens in swine. Front. Vet. Sci. 2021, 8, 699561. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, H.; Chen, H.; Ma, S.J.; Wei, Z. Porcine epidemic diarrhea virus: A review of detection, inhibition of host gene expression and evasion of host innate immune. Microb. Pathog. 2024, 174, 106873. [Google Scholar] [CrossRef]
- Mettenleiter, T.C.; Ehlers, B.; Müller, T.; Yoon, K.-J.; Teifke, J.P. Diseases of Swine. Chapter 35, 11th ed.; Jeffrey, J.Z., Locke, A.K., Ramirez, A., Kent, J.S., Gregory, W.S., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019. [Google Scholar]
- Opriessnig, T.; Meng, X.J.; Halbur, P.G. Porcine Circovirus Type 2–Associated Disease: Update on Current Terminology, Clinical Manifestations, Pathogenesis, Diagnosis, and Intervention Strategies. J. Vet. Diagn. Investig. 2007, 19, 591–615. [Google Scholar] [CrossRef]
- Lopes, T.S.; Lunge, V.R.; Streck, A.F. Antiviral Alternatives against Important Members of the Subfamily Parvovirinae: A Review. Arch. Virol. 2024, 169, 52. [Google Scholar] [CrossRef]
- Bogdanos, D.P.; Smyk, D.S.; Invernizzi, P.; Rigopoulou, E.I.; Blank, M.; Pouria, S.; Shoenfeld, Y. Infectome: A Platform to Trace Infectious Triggers of Autoimmunity. Autoimmun. Rev. 2013, 12, 726–740. [Google Scholar] [CrossRef]
- Huang, X.; Wu, W.; Tian, X.; Hou, X.; Cui, X.; Xiao, Y.; Jiao, Q.; Zhou, P.; Liu, L.; Shi, W.; et al. A Total Infectome Approach to Understand the Etiology of Infectious Disease in Pigs. Microbiome 2022, 10, 73. [Google Scholar] [CrossRef]
- Alexandrova, R.; Tsachev, I.; Kirov, P.; Abudalleh, A.; Hristov, H.; Zhivkova, T.; Dyakova, L.; Baymakova, M. Hepatitis E Virus (HEV) Infection Among Immunocompromised Individuals: A Brief Narrative Review. Infect. Drug Resist. 2024, 17, 1021–1040. [Google Scholar] [CrossRef]
- Sewgobind, S.; Johnson, N.; Mansfield, K.L. JMM Profile: Japanese encephalitis virus: An emerging threat. J. Med. Microbiol. 2022, 71, 001620. [Google Scholar] [CrossRef]
- Bernardi, F.; Ungaro, F.; D’Amico, F.; Zilli, A.; Parigi, T.L.; Massimino, L.; Allocca, M.; Danese, S.; Furfaro, E. The role of viruses in the pathogenesis of immune-mediated gastro-intestinal diseases. Int. J. Mol. Sci. 2024, 25, 8301. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.W.; Webby, R.J.; Webster, R.G. Evolution and ecology of influenza A viruses. Curr. Top. Microbiol. Immunol. 2014, 385, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.; Usui, T.; Shibata, C.; Nishigaki, H.; Yamaguchi, T. Possible bidirectional human–swine and subsequent human–human transmission of influenza virus A(H1N1)/2009 in Japan. Zoonoses Public Health 2022, 69, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Makovska, I.F.; Dhaka, P.; Chantziaras, I.; Sa Pessoa, J.; Dewulf, J. The role of wildlife and pests in the transmission of pathogenic agents to domestic pigs: A systematic review. Animals 2023, 13, 1830. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, D.; Prakash, A.; Nguyen, Q.A.; Salman, M.; Suntisukwattana, R.; Atthaapa, W.; Tantituvanont, A.; Lin, H.; Songkasupa, T.; Nilubol, D. Comprehensive characterization of the genetic landscape of African swine fever virus: Insights into infection dynamics, immunomodulation, virulence and genes with unknown function. Animals 2024, 14, 2187. [Google Scholar] [CrossRef]
- Hammond, J.M.; Johnson, M.K. Porcine Adenovirus as a Delivery System for Swine Vaccines and Immunotherapeutics. Vet. J. 2005, 169, 17–27. [Google Scholar] [CrossRef]
- García-Hernández, M.E.; Trujillo-Ortega, M.E.; Alcaraz-Estrada, S.L.; Lozano-Aguirre-Beltrán, L.; Sandoval-Jaime, C.; Taboada-Ramírez, B.I.; Sarmiento-Silva, R.E. Molecular Detection and Characterization of Porcine Epidemic Diarrhea Virus and Porcine Aichivirus C Coinfection in México. Viruses 2021, 13, 738. [Google Scholar] [CrossRef]
- Di Bartolo, I.; Angeloni, G.; Tofani, S.; Monini, M.; Ruggeri, F.M. Infection of Farmed Pigs with Porcine Kobuviruses in Italy. Arch. Virol. 2015, 160, 1533–1536. [Google Scholar] [CrossRef]
- Kuczera, K.; Orłowska, A.; Smreczak, M.; Frant, M.; Trębas, P.; Rola, J. Prevalence of Astroviruses in Different Animal Species in Poland. Viruses 2024, 16, 80. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Li, L.; Xue, M.; Feng, L. Different Infectivity of Swine Enteric Coronaviruses in Cells of Various Species. Pathogens 2024, 13, 174. [Google Scholar] [CrossRef]
- Janke, B.; Morehouse, L.; Solorzano, R. Single and Mixed Infections of Neonatal Pigs with Rotaviruses and Enteroviruses: Virological Studies. Can. J. Vet. Res. 1988, 52, 360–363. [Google Scholar] [PubMed]
- Nemes, K.; Persson, S.; Simonsson, M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens-Transmission Routes and Methods for Detection in Food. Viruses 2023, 15, 1725. [Google Scholar] [CrossRef] [PubMed]
- Breum, S.Ø.; Hjulsager, C.K.; de Deus, N.; Segalés, J.; Larsen, L.E. Hepatitis E Virus Is Highly Prevalent in the Danish Pig Population. Vet. Microbiol. 2010, 146, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Plaza, P.I.; Gamarra-Toledo, V.; Rodríguez Euguí, J.; Lambertucci, S.A. Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide. Emerg. Infect. Dis. 2024, 30, 444–452. [Google Scholar] [CrossRef]
- Domańska-Blicharz, K.; Świętoń, E.; Świątalska, A.; Monne, I.; Fusaro, A.; Tarasiuk, K.; Wyrostek, K.; Styś-Fijoł, N.; Giza, A.; Pietruk, M.; et al. Outbreak of Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Cats, Poland, June to July 2023. Eurosurveillance 2023, 28, 2300366. [Google Scholar] [CrossRef]
- Omatola, C.A.; Mshelbwala, P.P.; Okolo, M.L.O.; Onoja, A.B.; Abraham, J.O.; Adaji, D.M.; Samson, S.O.; Okeme, T.O.; Aminu, R.F.; Akor, M.E.; et al. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances—A Comprehensive Review. Vaccines 2024, 12, 590. [Google Scholar] [CrossRef]
- Villabruna, N.; Koopmans, M.P.G.; de Graaf, M. Animals as Reservoir for Human Norovirus. Viruses 2019, 11, 478. [Google Scholar] [CrossRef]
- Paul, D.; Mohanty, A.; Shah, A.; Padhi, B.K.; Sah, R. Nipah Virus Outbreak in Bangladesh amid the COVID-19 Pandemic: Correspondence. J. Oral Biol. Craniofacial Res. 2023, 5, 57–59. [Google Scholar] [CrossRef]
- Talukdar, P.; Dutta, D.; Ghosh, E.; Bose, I.; Bhattacharjee, S. Molecular Pathogenesis of Nipah Virus. Appl. Biochem. Biotechnol. 2023, 195, 2451–2462. [Google Scholar] [CrossRef]
- Chen, S.; Liu, F.; Yang, A.; Shang, K. For better or worse: Crosstalk of parvovirus and host DNA damage response. Front. Immunol. 2024, 15, 1324531. [Google Scholar] [CrossRef]
- Murni, D.; Trisunuwati, P.; Liao, M.H. Zoonotic Potential of Rotavirus from Swine and Bovine in South of Taiwan. J. Exp. Life Sci. 2016, 6, 29–33. [Google Scholar] [CrossRef]
- Liu, W.; Yang, B.; Wang, E.; Liu, J.; Lan, X. Complete Sequence and Phylogenetic Analysis of a Porcine Sapovirus Strain Isolated from Western China. Virus Genes 2014, 49, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Winder, N.; Gohar, S.; Muthana, M. Norovirus: An overview of virology and preventative measures. Viruses 2022, 14, 2811. [Google Scholar] [CrossRef] [PubMed]
- Parrón, I.; Barrabeig, I.; Soldevila, N.; Bartolomé, R.; Guix, S.; Rius, C.; Cornejo-Sánchez, T.; Izquierdo, C.; Domínguez, Á. Outbreaks of gastroenteritis due to norovirus in schools and summer camps in Catalonia, 2017–2019. Microbiol. Spectr. 2022, 10, e00119-22. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Swart, A. Impact of waning acquired immunity and asymptomatic infections on case-control studies for enteric pathogens. Epidemics 2016, 17, 56–63. [Google Scholar] [CrossRef]
- Matamoros, D.; Solis Worsfold, C.; Cortés-Campos, R.; Bolaños Acuña, H.M.; Campos Chacón, E.; Jiménez Sánchez, C.F. Molecular characterization of norovirus and sapovirus detected in animals and humans in Costa Rica: Zoo-anthropozoonotic potential of human norovirus GII.4. Open Vet. J. 2023, 13, 70–77. [Google Scholar] [CrossRef]
- Mattison, K.; Shukla, A.; Cook, A.; Pollari, F.; Friendship, R.; Kelton, D.; Bidawid, S.; Farber, J.M. Human Noroviruses in Swine and Cattle. Emerg. Infect. Dis. 2007, 13, 1184–1188. [Google Scholar] [CrossRef]
- Nyblade, C.; Hensley, C.; Parreño, V.; Zhou, P.L.; Frazier, M.; Frazier, A.; Ramesh, A.; Lei, S.; Degiuseppe, J.I.; Tan, M.; et al. A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines. Viruses 2022, 14, 2803. [Google Scholar] [CrossRef]
- Kumar, D.; Shepherd, F.K.; Springer, N.L.; Mwangi, W.; Marthaler, D.G. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022, 11, 1078. [Google Scholar] [CrossRef]
- Anderson, E.J.; Weber, S.G. Rotavirus infection in adults. Lancet Infect. Dis. 2004, 4, 91–99. [Google Scholar] [CrossRef]
- Shanley, N.R.; Langlois, R.A. Intra- and cross-species transmission of astroviruses. Viruses 2021, 13, 1127. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, X.; Zhang, Y.; Li, Q.; Gao, J.; Hu, Y.; Yuan, J.; Hu, H.; Jin, X.; Wei, Z. Isolation and pathogenicity of a Chinese porcine astrovirus type 5 strain HNPDS-01 and its influence on cecum microbiota in piglets. Transbound. Emerg. Dis. 2024, 2024, 5777097. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Wang, K.; Gao, Z.; Li, P.R.; Lin, Y.; Jia, L.; Wang, Q.; Song, H.; Liu, P. Characterisation of human astrovirus in a diarrhoea outbreak using nanopore and Sanger sequencing protocols. Virol. J. 2023, 20, 149. [Google Scholar] [CrossRef] [PubMed]
- De Benedictis, P.; Schultz-Cherry, S.; Burnham, A.; Cattoli, G. Astrovirus Infections in Humans and Animals—Molecular Biology, Genetic Diversity, and Interspecies Transmissions. Infect. Genet. Evol. 2011, 11, 1529–1544. [Google Scholar] [CrossRef] [PubMed]
- Kumthip, K.; Khamrin, P.; Kongkaew, A.; Vachirachewin, R.; Malasao, R.; Ushijima, H.; Maneekarn, N. Molecular epidemiology and characterization of porcine adenoviruses in pigs with diarrhea in Thailand. Infect. Genet. Evol. 2019, 68, 153–157. [Google Scholar] [CrossRef]
- Hundesa, A.; Maluquer de Motes, C.; Albinana-Gimenez, N.; Rodriguez-Manzano, J.; Bofill-Mas, S.; Suñén, E.; Girones, R. Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. J. Virol. Methods 2009, 158, 130–135. [Google Scholar] [CrossRef]
- Simões, R.S.Q. Environmental virology linked to waterborne diseases and foodborne pathogens: Human and animal food viruses. Int. J. Front. Biol. Pharm. Res. 2024, 5, 31–42. [Google Scholar] [CrossRef]
- Benkö, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarría, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J. Gen. Virol. 2022, 103, 001721. [Google Scholar] [CrossRef]
- Wu, F.T.; Oka, T.; Kuo, T.Y.; Doan, Y.H.; Liu, L.T.C. Sapoviruses detected from acute gastroenteritis outbreaks and hospitalized children in Taiwan. J. Formos. Med. Assoc. 2021, 120, 1031–1038. [Google Scholar] [CrossRef]
- Li, J.; Shen, Q.; Zhang, W.; Zhao, T.; Li, Y.; Jiang, J.; Yu, X.; Guo, Z.; Cui, L.; Hua, X. Genomic organization and recombination analysis of a porcine sapovirus identified from a piglet with diarrhea in China. Virol. J. 2017, 14, 57. [Google Scholar] [CrossRef]
- Nagai, M.; Wang, Q.; Oka, T.; Saif, L.J. Porcine Sapoviruses: Pathogenesis, Epidemiology, Genetic Diversity, and Diagnosis. Virus Res. 2020, 286, 198025. [Google Scholar] [CrossRef] [PubMed]
- Migueres, M.; Lhomme, S.; Izopet, J. Hepatitis A: Epidemiology, high-risk groups, prevention and research on antiviral treatment. Viruses 2021, 13, 1900. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gómez, A.; Varela-Fascinetto, G.; Sotelo, M.; Higuera-de la Tijera, F.; Nájera-Cortés, A.S.; García-Juárez, I.; Muñoz-Espinosa, L.E.; Feregrino, R.R.; Espinoza, H.C.; Reyes-López, A. Outbreak of hepatitis A in a post-vaccination era: High rate of co-infection with sexually transmitted diseases. Ann. Hepatol. 2020, 19, 641–644. [Google Scholar] [CrossRef]
- Sattar, S.A.; Tetro, J.; Bidawid, S.; Farber, J. Foodborne Spread of Hepatitis A: Recent Studies on Virus Survival, Transfer and Inactivation. Can. J. Infect. Dis. 2000, 11, 159–163. [Google Scholar] [CrossRef]
- Aslan, A.T.; Balaban, H.Y. Hepatitis E virus: Epidemiology, diagnosis, clinical manifestations, and treatment. World J. Gastroenterol. 2020, 26, 5543–5560. [Google Scholar] [CrossRef]
- Treagus, S.; Wright, C.; Baker-Austin, C.; Longdon, B.; Lowther, J.A. The foodborne transmission of hepatitis E virus to humans. Food Environ. Virol. 2021, 13, 127–145. [Google Scholar] [CrossRef]
- Thiry, D.; Mauroy, A.; Pavio, N.; Purdy, M.A.; Rose, N.; Thiry, E.; de Oliveira-Filho, E.F. Hepatitis E virus and related viruses in animals. Transbound. Emerg. Dis. 2017, 64, 37–52. [Google Scholar] [CrossRef]
- Di Cola, G.; Fantilli, G.; Pisano, M.B.; Wassaf, M.M.; Nates, S.V.; Ré, V.E. High Circulation of Hepatitis E Virus (HEV) in Pigs from the Central Region of Argentina without Evidence of Virus Occurrence in Pork Meat and Derived Products. Res. Vet. Sci. 2023, 164, 105000. [Google Scholar] [CrossRef]
- Iqbal, H.; Mehmood, B.F.; Sohal, A.; Roytman, M. Hepatitis E Infection: A Review. World J. Virol. 2023, 12, 262–271. [Google Scholar] [CrossRef]
- Ray, L.C.; Collins, J.P.; Griffin, P.M.; Shah, H.J.; Boyle, M.M.; Cieslak, P.R.; Dunn, J.R.; Lathrop, S.L.; McGuire, S.; Rissman, T.; et al. Decreased incidence of infections caused by pathogens transmitted commonly through food during the COVID-19 pandemic—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2017–2020. Morb. Mortal. Wkly. Rep. 2021, 70, 1332–1336. [Google Scholar] [CrossRef]
- Hu, X.M.; Zhang, Y.; Zhou, X.; Xu, B.; Yang, M.; Wang, M.; Zhang, C.; Li, J.; Bai, R.; Xu, W.; et al. Simultaneously typing nine serotypes of enteroviruses associated with hand, foot, and mouth disease by a GeXP analyzer-based multiplex reverse transcription-PCR assay. J. Clin. Microbiol. 2012, 50, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, M.; von Bonsdorff, C.H.; Vinjé, J.; de Medici, D.; Monroe, S. Foodborne viruses. FEMS Microbiol. Rev. 2002, 26, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Verboon-Maciolek, M.A.; Krediet, T.G.; Gerards, L.J.; de Vries, L.S.; Groenendaal, F.; van Loon, A.M. Severe neonatal parechovirus infection and similarity with enterovirus infection. Pediatr. Infect. Dis. J. 2008, 27, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Krasota, A.Y.; Loginovskikh, N.; Ivanova, O.; Lipskaya, G.Y. Direct identification of enteroviruses in cerebrospinal fluid of patients with suspected meningitis by nested PCR amplification. Viruses 2016, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Li, S.; Lu, X.; Liu, L.; Gao, Y.; Hu, F.; Yu, K.; Ma, X.; Li, Y.; Huang, B.; et al. Development and Clinical Application of a Molecular Assay for Four Common Porcine Enteroviruses. Vet. Sci. 2024, 11, 305. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, Q.; Chen, G.; Zheng, S. The long-term presence of SARS-CoV-2 on cold-chain food packaging surfaces indicates a new COVID-19 winter outbreak: A mini review. Front. Public Health 2021, 9, 650493. [Google Scholar] [CrossRef]
- Guo, M.; Tao, W.; Flavell, R.A.; Zhu, S. Potential intestinal infection and faecal–oral transmission of SARS-CoV-2. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 269–283. [Google Scholar] [CrossRef]
- Gwenzi, W. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. Sci. Total Environ. 2021, 753, 141751. [Google Scholar] [CrossRef]
- Alonso-Bellido, I.; Bachiller, S.; Vázquez, G.; Cruz-Hernández, L.; Martinez, E.; Ruiz-Mateos, E.; Deierborg, T.; Venero, J.L.; Real, L.M.; Ruiz, R. The other side of SARS-CoV-2 infection: Neurological sequelae in patients. Front. Aging Neurosci. 2021, 13, 632673. [Google Scholar] [CrossRef]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of Ferrets, Cats, Dogs, and Other Domesticated Animals to SARS–Coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.; Liu, X.; Chiu, M.C.; Zhao, X.; Wang, D.; Wei, Y.; Lee, A.; Zhang, A.J.; Chu, H.; et al. Infection of Bat and Human Intestinal Organoids by SARS-CoV-2. Nat. Med. 2020, 26, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Harder, T.; Buda, S.; Hengel, H.; Beer, M.; Mettenleiter, T.C. Poultry food products—A source of avian influenza virus transmission to humans? Clin. Microbiol. Infect. 2016, 22, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Bhattar, K.; Pandit, T.; Pandit, R. Parainfluenza bronchiolitis mimicking recurrent lobar pneumonia. Cureus 2022, 14, e26818. [Google Scholar] [CrossRef] [PubMed]
- Conraths, F.J.; Sauter-Louis, C.; Globig, A.; Dietze, K.; Pannwitz, G.; Albrecht, K.; Höreth-Böntgen, D.; Beer, M.; Staubach, C.; Homeier-Bachmann, T. Highly pathogenic avian influenza H5N8 in Germany: Outbreak investigations. Transbound. Emerg. Dis. 2016, 63, 10–13. [Google Scholar] [CrossRef]
- Le Menach, A.; Vergu, E.; Grais, R.F.; Smith, D.L.; Flahault, A. Key strategies for reducing spread of avian influenza among commercial poultry holdings: Lessons for transmission to humans. Proc. R. Soc. B Biol. Sci. 2006, 273, 2467–2475. [Google Scholar] [CrossRef]
- Charostad, J.; Rezaei, M.; Mahmoudvand, S.; Bashash, D.; Ali, M.; Nakhaie, M.; Zandi, K. A Comprehensive Review of Highly Pathogenic Avian Influenza (HPAI) H5N1: An Imminent Threat at Doorstep. Travel Med. Infect. Dis. 2023, 55, 102638. [Google Scholar] [CrossRef]
- Peacock, T.; Moncla, L.; Dudas, G.; VanInsberghe, D.; Sukhova, K.; Lloyd-Smith, J.O.; Worobey, M.; Lowen, A.C.; Nelson, M.I. The global H5N1 influenza panzootic in mammals. Nature 2024. [Google Scholar] [CrossRef]
- Arruda, B.; Baker, A.L.V.; Buckley, A.; Anderson, T.K.; Torchetti, M.; Bergeson, N.H.; Killian, M.L.; Lantz, K. Divergent Pathogenesis and Transmission of Highly Pathogenic Avian Influenza A(H5N1) in Swine. Emerg. Infect. Dis. 2024, 30, 738–751. [Google Scholar] [CrossRef]
- Mauroy, A.; Scipioni, A.; Mathijs, E.; Miry, C.; Ziant, D.; Thys, C.; Thiry, E. Noroviruses and Sapoviruses in Pigs in Belgium. Arch. Virol. 2008, 153, 1927–1931. [Google Scholar] [CrossRef]
- Wang, Q.H.; Han, M.G.; Cheetham, S.; Souza, M.; Funk, J.A.; Saif, L.J. Porcine Noroviruses Related to Human Noroviruses. Emerg. Infect. Dis. 2005, 11, 1874–1881. [Google Scholar] [CrossRef]
- Bucardo, F.; González, F.; Reyes, Y.; Blandón, P.; Saif, L.; Nordgren, J. Seroprevalence in Household Raised Pigs Indicate High Exposure to GII Noroviruses in Rural Nicaragua. Zoonoses Public Health 2016, 63, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.; Azevedo, M.S.P.; Jung, K.; Cheetham, S.; Saif, L.J. Pathogenesis and Immune Responses in Gnotobiotic Calves after Infection with the Genogroup II.4-HS66 Strain of Human Norovirus. J. Virol. 2008, 82, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhang, W.; Yang, S.; Yang, Z.; Chen, Y.; Cui, L.; Zhu, J.; Hua, X. Recombinant Porcine Norovirus Identified from Piglet with Diarrhea. BMC Vet. Res. 2012, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Cavicchio, L.; Tassoni, L.; Laconi, A.; Cunial, G.; Gagliazzo, L.; Milani, A.; Campalto, M.; Di Martino, G.; Forzan, M.; Monne, I.; et al. Unrevealed Genetic Diversity of GII Norovirus in the Swine Population of North East Italy. Sci. Rep. 2020, 10, 12522. [Google Scholar] [CrossRef]
- Kasloff, S.B.; Leung, A.; Pickering, B.S.; Smith, G.; Moffat, E.; Collignon, B.; Embury-Hyatt, C.; Kobasa, D.; Weingartl, H.M. Pathogenicity of Nipah Henipavirus Bangladesh in a Swine Host. Sci. Rep. 2019, 9, 5230. [Google Scholar] [CrossRef]
- Mire, C.E.; Satterfield, B.A.; Geisbert, J.B.; Agans, K.N.; Borisevich, V.; Yan, L.; Chan, Y.P.; Cross, R.W.; Fenton, K.A.; Broder, C.C.; et al. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. Sci. Rep. 2016, 6, 30916. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Zhang, Y.Y.; Liu, M.C.; Chen, J.J.; Li, T.T.; Liu, Y.N.; Zhang, L.Y.; Wang, T.; Yu, L.J.; Che, T.L.; et al. Mapping the Distribution of Nipah Virus Infections: A Geospatial Modelling Analysis. Lancet Planet. Health 2024, 8, e463–e475. [Google Scholar] [CrossRef]
- Ang, B.S.P.; Lim, T.C.C.; Wang, L. Nipah Virus Infection. J. Clin. Microbiol. 2018, 56, e01875-01817. [Google Scholar] [CrossRef]
- Ching, P.K.G.; de los Reyes, V.C.; Sucaldito, M.N.; Tayag, E.; Columna-Vingno, A.B.; Malbas, F.F.; Bolo, G.C.; Sejvar, J.J.; Eagles, D.; Playford, G.; et al. Outbreak of Henipavirus Infection, Philippines, 2014. Emerg. Infect. Dis. 2015, 21, 328–331. [Google Scholar] [CrossRef]
- Luby, S.P.; Gurley, E.S.; Hossain, M.J. Transmission of Human Infection with Nipah Virus. Clin. Infect. Dis. 2009, 49, 1743–1748. [Google Scholar] [CrossRef]
- Crotta, M.; Lavazza, A.; Mateus, A.; Guitian, J. Viraemic Pigs Entering the Food Chain Are the Most Likely Source of Hepatitis E Virus (HEV) in Pork Meat: Modelling the Fate of HEV during Slaughtering of Pigs. Food Control 2021, 121, 107662. [Google Scholar] [CrossRef]
- Salines, M.; Andraud, M.; Rose, N. From the Epidemiology of Hepatitis E Virus (HEV) within the Swine Reservoir to Public Health Risk Mitigation Strategies: A Comprehensive Review. Vet. Res. 2017, 48, 31. [Google Scholar] [CrossRef] [PubMed]
- Turlewicz-Podbielska, H.; Augustyniak, A.; Wojciechowski, J.; Pomorska-Mól, M. Hepatitis E Virus in Livestock—Update on Its Epidemiology and Risk of Infection to Humans. Animals 2023, 13, 3239. [Google Scholar] [CrossRef] [PubMed]
- Montone, A.M.I.; De Sabato, L.; Suffredini, E.; Alise, M.; Zaccherini, A.; Volzone, P.; Di Maro, O.; Neola, B.; Capuano, F.; Di Bartolo, I. Occurrence of HEV-RNA in Italian Regional Pork and Wild Boar Food Products. Food Env. Virol 2019, 11, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Prpić, J.; Baymakova, M. Hepatitis E Virus (HEV) Infection among Humans and Animals: Epidemiology, Clinical Characteristics, Treatment, and Prevention. Pathogens 2023, 12, 931. [Google Scholar] [CrossRef]
- Puente, H.; Arguello, H.; Cortey, M.; Gómez-García, M.; Mencía-Ares, O.; Pérez-Pérez, L.; Díaz, I.; Carvajal, A. Detection and genetic characterization of enteric viruses in diarrhoea outbreaks from swine farms in Spain. Porc. Health Manag. 2023, 9, 29. [Google Scholar] [CrossRef]
- Nantel-Fortier, N.; Lachapelle, V.; Letellier, A.; L’Homme, Y.; Brassard, J. Kobuvirus shedding dynamics in a swine production system and their association with diarrhea. Vet Microbiol 2019, 235, 319–326. [Google Scholar] [CrossRef]
- Zang, Y.; Feng, B.; Huang, Z.; Zhao, D.; Qi, W.; Qiu, Y.; Qiu, M.; Li, C.; Lin, H.; Zheng, W.; et al. Epidemiologic and Genomic Characterizations of Porcine Kobuviruses in Diarrheic and Healthy Pigs. Animals 2023, 13, 3129. [Google Scholar] [CrossRef]
- Guo, Z.; Jin, Q.; Li, P.; Xing, G.; Lu, Q.; Zhang, G. Potential cross-species transmission risks of emerging swine enteric coronavirus to human beings. J. Med. Virol. 2023, 95, e28912. [Google Scholar] [CrossRef]
- Liu, J. Evolutionary origin, genetic recombination, and phylogeography of porcine kobuvirus. Viruses 2023, 15, 240. [Google Scholar] [CrossRef]
- Gaire, T.N.; Odland, C.; Zhang, B.; Slizovskiy, I.B.; Jorgenson, B.; Wehri, T.; Meneguzzi, M.; Wass, B.; Schuld, J.; Hanson, D.; et al. Slaughtering processes impact microbial communities and antimicrobial resistance genes of pig carcasses. Sci. Total Environ. 2024, 927, 174394. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lázaro, D.; Cook, N.; Ruggeri, F.M.; Sellwood, J.; Nasser, A.; Nascimento, M.S.; D’Agostino, M.; Santos, R.; Saiz, J.C.; Rzeżutka, A.; et al. Virus hazards from food, water and other contaminated environments. FEMS Microbiol. Rev. 2012, 36, 786–814. [Google Scholar] [CrossRef] [PubMed]
- Kovač, K.; Diez-Valcarce, M.; Hernandez, M.; Raspor, P.; Rodríguez-Lázaro, D. High hydrostatic pressure as emergent technology for the elimination of foodborne viruses. Trends Food Sci. Technol. 2010, 21, 558–568. [Google Scholar] [CrossRef]
- Locus, T.; Lambrecht, E.; Peeters, M.; Suin, V.; Verhaegen, B.; Van Hoorde, K.; Lamoral, S.; Vanwolleghem, T.; Van Gucht, S. Hepatitis E virus in pork meat products and exposure assessment in Belgium. Int. J. Food Microbiol. 2023, 397, 110198. [Google Scholar] [CrossRef] [PubMed]
- De Schryver, A.; François, G.; Hambach, R.; Tabibi, R.; van Sprundel, M.; Colosio, C. Hepatitis E virus infection: An emerging occupational risk in pig handlers? Occup. Environ. Med. 2016, 73, A80. [Google Scholar] [CrossRef]
- Andraud, M.; Dumarest, M.; Cariolet, R.; Aylaj, B.; Barnaud, E.; Eono, F.; Pavio, N.; Rose, N. Direct contact and environmental contaminations are responsible for HEV transmission in pigs. Vet. Res. 2013, 44, 102. [Google Scholar] [CrossRef]
- Escudero, B.I.; Rawsthorne, H.; Gensel, C.; Jaykus, L.A. Persistence and Transferability of Noroviruses on and between Common Surfaces and Foods. J. Food Prot. 2012, 75, 927–935. [Google Scholar] [CrossRef]
- Foodborne Diseases Estimates. Available online: https://www.who.int/data/gho/data/themes/who-estimates-of-the-global-burden-of-foodborne-diseases# (accessed on 2 October 2024).
- White Paper on Food Safety of 12 January 2000 (COM/99/0719 Final). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=LEGISSUM:l32041 (accessed on 2 October 2024).
- Hazards, E. Panel o.B.; Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernandez Escamez, P.S.; Herman, L.; Koutsoumanis, K.; Lindqvist, R.; et al. Public health risks associated with hepatitis E virus (HEV) as a food-borne pathogen. EFSA J. 2017, 15, e04886. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- HACCP Principles & Application Guidelines. Available online: https://www.fda.gov/food/hazard-analysis-critical-control-point-haccp/haccp-principles-application-guidelines (accessed on 3 October 2024).
- Ruckli, A.K.; Hörtenhuber, S.J.; Ferrari, P.; Guy, J.; Helmerichs, J.; Hoste, R.; Hubbard, C.; Kasperczyk, N.; Leeb, C.; Malak-Rawlikowska, A.; et al. Integrative Sustainability Analysis of European Pig Farms: Development of a Multi-Criteria Assessment Tool. Sustainability 2022, 14, 5988. [Google Scholar] [CrossRef]
- Olsen, J.V.; Andersen, H.M.-L.; Kristensen, T.; Schlægelberger, S.V.; Udesen, F.; Christensen, T.; Sandøe, P. Multidimensional sustainability assessment of pig production systems at herd level–The case of Denmark. Livest. Sci. 2023, 270, 105208. [Google Scholar] [CrossRef]
- Pallerla, S.R.; Schembecker, S.; Meyer, C.G.; Linh, L.T.K.; Johne, R.; Wedemeyer, H.; Bock, C.T.; Kremsner, P.G.; Velavan, T.P. Hepatitis E Virus Genome Detection in Commercial Pork Livers and Pork Meat Products in Germany. J. Viral Hepat. 2021, 28, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Pavio, N.; Merbah, T.; Thébault, A. Frequent Hepatitis E Virus Contamination in Food Containing Raw Pork Liver, France. Emerg. Infect. Dis. 2014, 20, 1925–1927. [Google Scholar] [CrossRef]
- Borghi, M.; Pierboni, E.; Primavilla, S.; Scoccia, E.; Costantini, C.; Cocconcelli, P.S.; Graziani, A.; Macellari, P.; Cummings, S.M.; Farneti, S.; et al. Detection of hepatitis E virus in game meat (wild boar) supply chain in Umbria region, Central Italy. Foods 2024, 13, 2504. [Google Scholar] [CrossRef]
- Anderson, B.; Lednicky, J.A.; Torremorell, M.; Gray, G.C. The use of bioaerosol sampling for airborne virus surveillance in swine production facilities: A mini review. Front. Vet. Sci. 2017, 4, 121. [Google Scholar] [CrossRef]
- Pickering, B.S.; Smith, G.; Pinette, M.; Embury-Hyatt, C.; Moffat, E.; Marszal, P.; Lewis, C.E. Susceptibility of domestic swine to experimental infection with severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2021, 27, 104–112. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Angeloni, G.; Salata, C.; Vonesch, N.; D’Amico, W.; Campagna, G.; Natale, A.; Zuliani, F.; Ceglie, L.; Monne, I.; et al. Hepatitis E Virus Infection in North Italy: High Seroprevalence in Swine Herds and Increased Risk for Swine Workers. Epidemiol. Infect. 2017, 145, 3375–3384. [Google Scholar] [CrossRef]
- Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and Pandemic Potential of Swine-Origin H1N1 Influenza Virus. Nature 2009, 459, 931–939. [Google Scholar] [CrossRef]
Virus | Size | Shape | Genetic Material | Host | Route of Transmission | Clinical Symptoms in Human | References |
---|---|---|---|---|---|---|---|
Adenovirus | 70–100 nm | Non-enveloped icosahedral | Double-stranded DNA | Humans and animals | Respiratory droplets, fecal–oral, aerosols | Respiratory infections, gastroenteritis, conjunctivitis | [21] |
Aichivirus/Kobuvirus | 30–32 nm | Non-enveloped icosahedral viruses | Positive-sense ssRNA | Pigs | Fecal–oral | Gastroenteritis, diarrhea | [22,23] |
Astrovirus | 28–30 nm | Non-enveloped icosahedral | ssRNA | Over 80 host species, including humans, bats, companion animals (dogs and cats), and livestock (pigs, chickens, and cows), as well as wild animals such as wild boars and rats | Fecal–oral | Asymptomatic or systemic; diarrhea and gastrointestinal symptoms, gastroenteritis, encephalopathy in immunocompromised individuals | [24] |
Coronaviruses | 80–120 nm | Enveloped, spherical | Positive-sense ssRNA | Humans and animals | Aerosol, fomite, fecal–oral | Respiratory infections, fever, cough, pneumonia | [25] |
Enterovirus | 20–30 nm | Non-enveloped icosahedral | Positive-sense ssRNA | Humans | Fecal–oral | Poliomyelitis, meningitis, encephalitis, respiratory infections | [26] |
Hepatitis A virus | 27–32 nm | Non-enveloped icosahedral | Positive-sense ssRNA | Humans | Fecal–oral | Jaundice, liver inflammation | [27] |
Hepatitis E virus | 27–34 nm | Icosahedral | ssRNA | Humans, pigs, fruit bats, rats, and other animals | Fecal–oral, zoonotic, contaminated blood products, undercooked meat | Asymptomatic, acute viral hepatitis, fulminant hepatitis, chronic hepatitis, cirrhosis, extrahepatic manifestations | [28] |
Highly pathogenic avian influenza virus | 300 nm | Spherical | Negative ssRNA | Wild birds, poultry, wide range of wild mammals: foxes, lynxes, skunks, raccoons, bears, otters, polecats, badgers, ferrets, pumas, panthers, opossums, seals, porpoises, and sea lions, as well as dolphins | Aerosol, fecal–oral | Respiratory symptoms, neurologic symptom | [29,30] |
Norovirus | 27 to 40 nm | Non-enveloped icosahedral | Linear, single-stranded, polyadenylated RNA | Humans, pigs, cattle, sheep, dogs, cats, lions, rodents, bats, sea lions, harbour porpoises | Fecal–oral, air-borne, water-borne | Gastroenteritis: vomiting and diarrhea | [31,32] |
Nipah virus | 40–600 nm | Enveloped, spherical | ssRNA | Fruit bats (Pteropus conspicullatus), humans, pigs | Direct contact with infected animals, contaminated food | Fever, body aches, headaches, sore throat and vomiting, which can soon become complicated with neurological manifestations suggestive of acute encephalitis (dizziness, altered sensorium, myoclonic jerks, etc.) | [33,34] |
Parvovirus | 18–26 nm | Non-enveloped icosahedral | ssDNA | Humans and animals | Respiratory, fecal–oral | Rash, anemia | [35] |
Rotavirus | 60–80 nm | Non-enveloped icosahedral | Double-stranded RNA | Humans | Fecal–oral | Diarrhea, vomiting, dehydration | [36] |
Sapovirus | 27–40 nm | Non-enveloped icosahedral | Positive-sense ssRNA | Humans | Fecal–oral | Gastroenteritis, diarrhea, vomiting | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczotka-Bochniarz, A.; Kochanowski, M. Pork as a Source of Diverse Viral Foodborne Infections: An Escalating Issue. Diversity 2024, 16, 679. https://doi.org/10.3390/d16110679
Szczotka-Bochniarz A, Kochanowski M. Pork as a Source of Diverse Viral Foodborne Infections: An Escalating Issue. Diversity. 2024; 16(11):679. https://doi.org/10.3390/d16110679
Chicago/Turabian StyleSzczotka-Bochniarz, Anna, and Maciej Kochanowski. 2024. "Pork as a Source of Diverse Viral Foodborne Infections: An Escalating Issue" Diversity 16, no. 11: 679. https://doi.org/10.3390/d16110679