A Robust Method for the Elaboration of SiO2-Based Colloidal Crystals as a Template for Inverse Opal Structures
<p>C-PC elaboration by solvent volatilization (<b>a</b>) or vertical lifting deposition method (<b>b</b>).</p> "> Figure 2
<p>Custom-made experimental chamber employed for the C-PC fabrication.</p> "> Figure 3
<p>Reflectance spectra of colloidal crystals obtained at 15 (<b>a</b>), 1.66 (<b>b</b>), and 0.28 µm/s (<b>c</b>).</p> "> Figure 4
<p>Peak wavelength distance of C-PC to the calculated value, as a function of lifting speed and particle concentration.</p> "> Figure 5
<p>FWHM and peak reflectance intensity (R%) of C-PC, as a function of lifting speed and particle concentration.</p> "> Figure 6
<p>Images of C-PC fabricated at 0.28 µm/s and (<b>a</b>) 1%, (<b>b</b>) 3%, and (<b>c</b>) 4% SP concentration.</p> "> Figure 7
<p>SEM micrograph of C-PCs elaborated at different lifting speeds-SP concentrations: (<b>a</b>) 2.39 µm/s<sup>−1</sup> % SP, (<b>b</b>) 2.39 µm/s<sup>−3</sup> % SP, (<b>c</b>) 0.28 µm/s<sup>−1</sup> % SP, and (<b>d</b>) 0.28 µm/s<sup>−3</sup> % SP.</p> "> Figure 8
<p>Schematic representation (<b>a</b>) and photograph (<b>b</b>) of experimental set-up employed for the reproducibility assays.</p> "> Figure 9
<p>Max. reflectance (<b>a</b>) and FWHM (<b>b</b>) of batches elaborated for the reproducibility assay. SEM images of deposits obtained from three replicates (<b>c</b>), (<b>d</b>), and (<b>e</b>).</p> "> Figure 10
<p>IO polymeric film: optical image (<b>a</b>), reflectance spectra (<b>b</b>), and SEM micrograph (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Colloidal Crystal Elaboration
2.2.2. Fabrication of Polymeric IOs
2.2.3. Reflectance Spectrum Analysis
2.2.4. Scanning Electron Microscopy
2.2.5. Data Analysis
3. Results
3.1. Optimization of the C-PC Elaboration Parameters
3.2. Reproducibility Assays
3.3. IOs and 3D Microporous Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, J.; Li, M.; Song, Y. Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. Nano Today 2018, 22, 132–144. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Bhat, R.; Harbison, J.P.; Logan, R.A. Survey of defect-mediated recombination lifetimes in GaAs epilayers grown by different methods. Appl. Phys Lett. 1987, 50, 1197–1199. [Google Scholar] [CrossRef]
- Haus, H.A.; Shank, C.V. Antisymmetric Taper of Distributed Feedback Lasers. IEEE J. Quantum Electron. 1976, 12, 532–539. [Google Scholar] [CrossRef]
- Fathi, F.; Rashidi, M.R.; Pakchin, P.S.; Ahmadi-kandjani, S.; Nikniazi, A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2021, 221, 121615. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Meng, Z.; Xue, M.; Qiu, L. Recent advances in self-assemblies and sensing applications of colloidal photonic crystals. Anal. Chim. Acta 2020, 1123, 91–112. [Google Scholar] [CrossRef]
- Huang, C.L. A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass. Coatings 2020, 10, 781. [Google Scholar] [CrossRef]
- Yu, J.; Lee, C.H.; Kan, C.W.; Jin, S. Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method. Nanomaterials 2020, 10, 1133. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Wu, Z. Fabrication of coatings with structural color on a wood surface. Coatings 2020, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.X.; Liu, C.H.; Lee, H.; Lee, B.W.; Hsu, C.H.; Lin, H.P.; Wu, Y.C. Synthesis of High-Performance Photonic Crystal Film for SERS Applications via Drop-Coating Method. Coatings 2020, 10, 679. [Google Scholar] [CrossRef]
- Maikin, D.; Wel, B.; Fogiel, A.; Staats, S.; Wirth, M. Submicrometer plate heights for capillaries packed with silica colloidal crystals. Anal. Chem. 2010, 82, 2175–2177. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, K.; Chen, Q.; Cheddah, S.; Shen, L.; Xiao, H.; Wang, Y.; Yan, C. Preparation of silica colloidal crystal column and its application in pressurized capillary electrochromatography. J. Chromatogr. A 2019, 1587, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Su, Q.; Zhou, L.; Xu, P.; Dong, A.; Qian, W. Monitoring of Binding Affinity Between Drugs and Human Serum Albumin Using Reflectometric Interference Spectroscopy with Silica Colloidal Crystal Films. Nano 2021, 16, 2150052. [Google Scholar] [CrossRef]
- Su, Q.; Wu, F.; Xu, P.; Dong, A.; Liu, C.; Wan, Y.; Qian, W. Interference Effect of Silica Colloidal Crystal Films and Their Applications to Biosensing. Anal. Chem. 2019, 91, 6080–6087. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, L.; Ma, N.; Wan, Y.; Qian, W. Real-time monitoring of interactions between dietary fibers and lipid layer and their impact on the lipolysis process. Food Hydrocoll. 2022, 125, 107445. [Google Scholar] [CrossRef]
- Cong, H.; Yu, B.; Tang, J.; Li, Z.; Liu, X. Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 2013, 42, 7774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, C.; Xia, Y. Inverse Opal Scaffolds and Their Biomedical Applications. Adv. Mater. 2017, 29, 1701115. [Google Scholar] [CrossRef] [PubMed]
- Casis, N.; Ravaine, S.; Reculusa, S.; Colvin, V.L.; Wiesner, M.R.; Estenoz, D.A.; Fidalgo de Cortalezzi, M.M. Polymeric membranes from colloidal templates with tunable morphology. Macromol. React. Eng. 2010, 4, 445–452. [Google Scholar] [CrossRef]
- Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage. J. Mater. Chem. C 2015, 3, 6109–6143. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Dong, X.; Qiu, L.; Yan, Z.; Meng, Z.; Xue, M.; He, X.; Liu, X. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J. Hazard Mater. 2017, 326, 130–137. [Google Scholar] [CrossRef]
- Rossi, E.; Salahshoor, Z.; Ho, K.-V.; Lin, C.-H.; Errea, M.I.; Fidalgo, M.M. Detection of chlorantraniliprole residues in tomato using field-deployable MIP photonic sensors. Microchimica Acta 2021, 188, 70. [Google Scholar] [CrossRef]
- Wang, X.; Mub, Z.; Liu, R.; Pu, Y.; Yin, L. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food Chem. 2013, 141, 3947–3953. [Google Scholar] [CrossRef] [PubMed]
- Salahshoor, Z.; Ho, K.-V.; Hsu, S.-Y.; Lin, C.-H.; de Cortalezzi, M.F. Detection of Atrazine and its metabolites by photonic molecularly imprinted polymers in aqueous solutions. Chem. Eng. J. Adv. 2022, 12, 100368. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Y.; Bai, J.; Sun, Z.; Ning, B.; Li, S.; Wang, J.; Peng, Y.; Gao, Z. Novel biomimic crystalline colloidal array for fast detection of trace parathion. ACS Sens. 2017, 2, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Cheng, Y.; Gao, Z.; Zhang, H.; Wei, J. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sens. Actuators B Chem. 2018, 273, 1705–1712. [Google Scholar] [CrossRef]
- Meng, L.; Meng, P.; Tang, B.; Zhang, Q.; Wang, Y. Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity. Forensic Sci. Int. 2013, 231, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Meng, P.; Zhang, Q.; Wang, Y. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels. Anal. Chim. Acta. 2013, 771, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Z.; Li, L.; Fu, G.Y.; Lai, Z.Z.; Peng, A.H.; Huang, Z.Y. Molecularly imprinted polymer-based photonic crystal sensor array for the discrimination of sulfonamides. Anal. Chim. Acta 2020, 1101, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Sai, N.; Wu, Y.; Yu, G.; Sun, Z.; Huang, G. A novel enrichment imprinted crystalline colloidal array for the ultratrace detection of chloramphenicol. Talanta 2016, 161, 1–7. [Google Scholar] [CrossRef]
- Kadhem, A.; Xiang, S.; Nagel, S.; Lin, C.-H.; de Cortalezzi, M.F. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers 2018, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Qasim, S.; Hsu, S.-Y.; Rossi, E.; Salahshoor, Z.; Lin, C.-H.; Parada, L.P.; Fidalgo, M. Detection of progesterone in aqueous samples by molecularly imprinted photonic polymers. Microchimica Acta 2022, 189, 174. [Google Scholar] [CrossRef]
- Chiappini, A.; Pasquardini, L.; Bossi, A. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. Sensors 2020, 20, 5069. [Google Scholar] [CrossRef] [PubMed]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Phillips, B.; Askar, K.; Choi, B.; Jiang, P.; Jiang, B. Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures. J. Mater. Chem. C Mater. 2013, 1, 6031. [Google Scholar] [CrossRef]
- Denkov, N.D.; Velev, O.D.; Kralchevsky, P.A.; Ivanov, I.B.; Yoshimura, H.; Nagayama, K. Two-dimensional crystallization. Nature 1993, 361, 26. [Google Scholar] [CrossRef]
- Vogel, N.; Retsch, M.; Fustin, C.A.; Del Campo, A.; Jonas, U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem. Rev. 2015, 115, 6265–6311. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Wang, L.; Dou, S.; Zhao, J.; Xu, H.; Wang, B.; Zhang, L.; Li, X.; Pan, L.; Li, Y. Recent advances in colloidal photonic crystal-based anti-counterfeiting materials. Crystals 2019, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Yin, Y. Responsive Photonic Crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522. [Google Scholar] [CrossRef]
- Rstudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Volume 1, p. 2673. [Google Scholar]
- Dimitrov, A.S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12, 1303–1311. [Google Scholar] [CrossRef]
- Deleuze, C.; Sarrat, B.; Ehrenfeld, F.; Perquis, S.; Derail, C.; Billon, L. Photonic properties of hybrid colloidal crystals fabricated by a rapid dip-coating process. Phys. Chem. Chem. Phys. 2011, 13, 10681–10689. [Google Scholar] [CrossRef]
- Bertone, J.F.; Jiang, P.; Hwang, K.S.; Mittleman, D.M.; Colvin, V.L. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys. Rev. Lett. 1999, 83, 300–303. [Google Scholar] [CrossRef]
Particle Size (nm) | 266 |
SiO2 ref. index (np) | 1.46 |
Air ref. index (nm) | 1 |
Effective refractive index (neff) | 1.35 |
Diffraction order (m) | 1 |
Incident angle (θ) | 30° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fookes, F.; Polo Parada, L.; Fidalgo, M. A Robust Method for the Elaboration of SiO2-Based Colloidal Crystals as a Template for Inverse Opal Structures. Sensors 2023, 23, 1433. https://doi.org/10.3390/s23031433
Fookes F, Polo Parada L, Fidalgo M. A Robust Method for the Elaboration of SiO2-Based Colloidal Crystals as a Template for Inverse Opal Structures. Sensors. 2023; 23(3):1433. https://doi.org/10.3390/s23031433
Chicago/Turabian StyleFookes, Federico, Luis Polo Parada, and María Fidalgo. 2023. "A Robust Method for the Elaboration of SiO2-Based Colloidal Crystals as a Template for Inverse Opal Structures" Sensors 23, no. 3: 1433. https://doi.org/10.3390/s23031433