Multisensor and Multiscale Data Integration Method of TLS and GPR for Three-Dimensional Detailed Virtual Reconstruction
<p>Working principle of TLS. O-xyz represents the instrument coordinate system of TLS.</p> "> Figure 2
<p>Working principle of the GPR and the spatial coordinate system of GPR data [<a href="#B45-sensors-23-09826" class="html-bibr">45</a>]. The x axis represents the horizontal distance of GPR profile, the y axis shows the number of GPR profiles along different survey lines, and the z axis is the two-way travel time of electromagnetic waves. Red color on the 2D GPR profile indicates high-amplitude radar reflections; green color represents low-amplitude radar reflections.</p> "> Figure 3
<p>Data integration workflow of TLS and GPR. Dark color (red or blue) on the GPR data indicates high-amplitude radar reflections, and light color (green) represents low-amplitude radar reflections.</p> "> Figure 4
<p>Data acquisition system of GPR and DGPS [<a href="#B45-sensors-23-09826" class="html-bibr">45</a>]. The GNSS antenna was situated on the in-between position of the GPR antenna. The pulse signals of the survey wheel were used to trigger the GPR control unit and the signal receiver of the mobile GNSS station. The GPR data and their geographical coordinates were simultaneously acquired using the GPR system and the signal receiver of the mobile GNSS station.</p> "> Figure 5
<p>The improved propagation model of electromagnetic waves. Path 1 indicates the direct wave in the air and path 2 represents the reflection wave in the ground.</p> "> Figure 6
<p>Panoramic image of the study site. White lines indicate four 2D 250 MHz GPR survey lines, and yellow rectangle represents the 3D GPR survey zone.</p> "> Figure 7
<p>TLS and GPR data acquisition. (<b>a</b>) TLS data acquisition. (<b>b</b>) GPR data acquisition with 250 MHz shield antenna. (<b>c</b>) GPR data acquisition with 500 MHz shield antenna.</p> "> Figure 8
<p>Data integration of TLS and GPR. Blue color on the GPR data indicates high-amplitude radar reflections, and green color represents low-amplitude radar reflections. (<b>a</b>) TLS-based point clouds. (<b>b</b>) 3D GPR data. The 3D data were generated by ten parallel 500 MHz GPR profiles with the same intervals of 1 m. (<b>c</b>) Data visualization of TLS-based and GPR-derived point clouds (2D and 3D). (<b>d</b>) Data visualization of TLS point clouds and 3D GPR data.</p> "> Figure 9
<p>Difference values of the common points between the TLS-based and GPR-derived point clouds. Black dots represent the difference values in the x direction, red dots indicate the difference values in the y direction, and blue dots represent the difference values in the z direction.</p> ">
Abstract
:1. Introduction
2. The Principle of Integrated TLS and GPR Method
2.1. TLS
2.2. GPR
2.3. Data Integration Principle of TLS and GPR
3. Methodology
3.1. Data Integration Method of GPR and GNSS
3.2. The Propagation Model of Electromagnetic Waves
3.3. Coordinate Transformation
3.4. Accuracy Assesment
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, H. Review on applications of LiDAR mapping technology to geosciences. Earth Sci. J. China Univ. Geosci. 2011, 36, 347–354. [Google Scholar]
- Ren, Z.; Chen, T.; Zhang, H.; Zheng, W.; Zhang, P. LiDAR Survey in Active Tectonics Studies: An Introduction and Overview. Acta Geol. Sin. 2014, 88, 1197–1202. [Google Scholar]
- Ren, Z.; Zielke, O.; Yu, J. Active tectonics in 4D high-resolution. J. Struct. Geol. 2018, 117, 264–271. [Google Scholar] [CrossRef]
- Schneiderwind, S.; Mason, J.; Wiatr, T.; Papanikolaou, I.; Reicherter, K. 3-D visualisation of palaeoseismic trench stratigraphy and trench logging using terrestrial remote sensing and GPR—A multiparametric interpretation. Solid Earth 2016, 7, 323–340. [Google Scholar] [CrossRef]
- Nap, M.-E.; Chiorean, S.; Cira, C.-I.; Manso-Callejo, M.-Á.; Păunescu, V.; Șuba, E.-E.; Sălăgean, T. Non-Destructive Measurements for 3D Modeling and Monitoring of Large Buildings Using Terrestrial Laser Scanning and Unmanned Aerial Systems. Sensors 2023, 23, 5678. [Google Scholar] [CrossRef]
- Lenda, G.; Marmol, U. Integration of high-precision UAV laser scanning and terrestrial scanning measurements for determining the shape of a water tower. Measurement 2023, 218, 113178. [Google Scholar] [CrossRef]
- Aziz, A.S.; Stewart, R.R.; Green, S.L.; Flores, J.B. Locating and characterizing burials using 3D ground-penetrating radar (GPR) and terrestrial laser scanning (TLS) at the historic Mueschke Cemetery, Houston, Texas. J. Archaeol. Sci. Rep. 2016, 8, 392–405. [Google Scholar]
- Pérez, J.P.C.; De Sanjosé Blasco, J.J.; Atkinson, A.D.J.; Del Río Pérez, L.M. Assessment of the Structural Integrity of the Roman Bridge of Alcántara (Spain) Using TLS and GPR. Remote Sens. 2018, 10, 387. [Google Scholar] [CrossRef]
- Puente, I.; Solla, M.; Lagüela, S.; Sanjurjo-Pinto, J. Reconstructing the Roman Site “Aquis Querquennis” (Bande, Spain) from GPR, T-LiDAR and IRT Data Fusion. Remote Sens. 2018, 10, 379. [Google Scholar] [CrossRef]
- Miguélez, M.M.; Madrigal, G.; Sixto, H.; Oliveira, N.; Calama, R. Terrestrial Laser Scanning for Non-Destructive Estimation of Aboveground Biomass in Short-Rotation Poplar Coppices. Remote Sens. 2023, 15, 1942. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, Y.; Tang, Y.; Tian, B. Application of Terrestrial Laser Scanning (TLS) in the Architecture, Engineering and Construction (AEC) Industry. Sensors 2022, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Pipan, M. Integrating Airborne Laser Scanning and 3D Ground-Penetrating Radar for the Investigation of Protohistoric Structures in Croatian Istria. Appl. Sci. 2021, 11, 8166. [Google Scholar]
- Dujardin, J.R.; Bano, M.; Schlupp, A.; Ferry, M.; Munkhuu, U.; Tsendayush, N.; Enkhee, B. GPR measurements to assess the Emeelt active fault’s characteristics in a highly smooth topographic context, Mongolia. Geophys. J. Int. 2014, 198, 174–186. [Google Scholar] [CrossRef]
- Lazar, M.; Basson, U.; Coddington, J.; Ben-David, R. When faults diverge—High resolution imaging of an intra-fault zone in an urban environment. A case study from the city of Tiberias, Israel. Eng. Geol. 2022, 296, 106454. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Fontolan, G.; Pipan, M. Advanced GPR imaging of sedimentary features: Integrated attribute analysis applied to sand dunes. Geophys. J. Int. 2018, 213, 147–156. [Google Scholar] [CrossRef]
- Fabregat, I.; Gutierrez, F.; Roque, C.; Comas, X.; Zarroca, M.; Carbonel, D.; Guerrero, J.; Linares, R. Reconstructing the internal structure and long-term evolution of hazardous sinkholes combining trenching, electrical resistivity imaging (ERI) and ground penetrating radar (GPR). Geomorphology 2017, 285, 287–304. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L.; Conti, A.; Fiorini, L.; Corazzini, S. Integration of GPR and TLS for investigating the floor of the ‘Salone dei Cinquecento’ in Palazzo Vecchio, Florence, Italy. Archaeol. Prospect. 2023, 30, 27–32. [Google Scholar] [CrossRef]
- Viberg, A.; Gustafsson, C.; Andrén, A. Multi-Channel Ground-Penetrating Radar Array Surveys of the Iron Age and Medieval Ringfort Bårby on the Island of Öland, Sweden. Remote Sens. 2020, 12, 227. [Google Scholar] [CrossRef]
- Zhao, W.K.; Forte, E.; Levi, S.T.; Pipan, M.; Tian, G. Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis. J. Archaeol. Sci. 2015, 54, 77–85. [Google Scholar] [CrossRef]
- Pan, J.; Shi, Z.; Meng, X.; Yue, Y.; Lin, C.; Chen, J.; Liu, H.; Cui, J. Reflection characteristics of typical road defects in 3D GPR images for collapse mitigation. J. Appl. Geophys. 2023, 217, 105166. [Google Scholar] [CrossRef]
- Bai, X.; Yang, Y.; Wen, Z.; Wei, S.; Zhang, J.; Liu, J.; Li, H.; Tian, H.; Liu, G. 3D-GPR-RM: A Method for Underground Pipeline Recognition Using 3-Dimensional GPR Images. Appl. Sci. 2023, 13, 7540. [Google Scholar] [CrossRef]
- Gabryś, M.; Ortyl, Ł. Georeferencing of Multi-Channel GPR—Accuracy and Efficiency of Mapping of Underground Utility Networks. Remote Sens. 2020, 12, 2945. [Google Scholar] [CrossRef]
- Gabyś, M.; Kryszyn, K.; Ortyl, Ł. GPR surveying method as a tool for geodetic verification of GESUT database of utilities in the light of BSI PAS128. Rep. Geod. Geoinform. 2019, 107, 49–59. [Google Scholar]
- Zhang, M.; Feng, X.; Bano, M.; Xing, H.; Wang, T.; Liang, W.; Zhou, H.; Dong, Z.; An, Y.; Zhang, Y. Review of Ground Penetrating Radar Applications for Water Dynamics Studies in Unsaturated Zone. Remote Sens. 2022, 14, 5993. [Google Scholar] [CrossRef]
- Masini, N.; Capozzoli, L.; Chen, P.; Chen, F.; Romano, G.; Peng, L.; Tang, P.; Sileo, M.; Ge, Q.; Lasaponara, R. Towards an Operational Use of Geophysics for Archaeology in Henan (China): Methodological Approach and Results in Kaifeng. Remote Sens. 2017, 9, 809. [Google Scholar] [CrossRef]
- Barrile, V.; Bilotta, G.; Meduri, G.M. Archaeological Investigations with TLS and GPR Surveys and Geomatics Techniques. In Proceedings of the 33rd EARSeL Symposium, Matera, Italy, 3–6 June 2013. [Google Scholar]
- Lagüela, S.; Solla, M.; Puente, I.; Prego, F.J. Joint use of GPR, IRT and TLS techniques for the integral damage detection in paving. Constr. Build. Mater. 2018, 174, 749–760. [Google Scholar] [CrossRef]
- Puente, I.; Solla, M.; Gonzalez-Jorge, H.; Arias, P. Validation of mobile LiDAR surveying for measuring pavement layer thicknesses and volumes. NDT E Int. 2013, 60, 70–76. [Google Scholar] [CrossRef]
- Solla, M.; Lorenzo, H.; Novo, A.; Caamaño, J.C. Structural analysis of the Roman Bibei bridge (Spain) based on GPR data and numerical modeling. Autom. Constr. 2012, 22, 334–339. [Google Scholar] [CrossRef]
- Kushwaha, S.K.P.; Raghavendra, S.; Pande, H.; Agrawal, S. Analysis and Integration of Surface and Subsurface Information of Different Bridges. J. Indian Soc. Remote Sens. 2019, 48, 315–331. [Google Scholar] [CrossRef]
- Solla, M.; Lorenzo, H.; Riveiro, B.; Rial, F.I. Non-destructive methodologies in the assessment of the masonry arch bridge of Traba, Spain. Eng. Fail. Anal. 2011, 18, 828–835. [Google Scholar] [CrossRef]
- Bouzas, O.; Conde, B.; Matos, J.C.; Solla, M.; Cabaleiro, M. Reliability-based structural assessment of historical masonry arch bridges: The case study of Cernadela bridge. Case Stud. Constr. Mater. 2023, 18, e02003. [Google Scholar] [CrossRef]
- Kayen, R.; Barnhardt, A.; Carkin, B.A.; Grossman, E.E.; Minasian, D.; Thompson, M. Imaging the M7.9 Denali Fault Earthquake 2002 Rupture at the Delta River Using LiDAR, RADAR, and SASW Surface Wave Geophysics; AGU Fall Meeting: San Francisco, CA, USA, 2004. [Google Scholar]
- Bubeck, A.; Wilkinson, M.; Roberts, G.P.; Cowie, P.A.; Mccaffrey, K.J.W.; Phillips, R.; Sammonds, P. The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning. Geomorphology 2015, 237, 38–51. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Li, J.; Liu, S.; Ma, D.; Lu, Y. The delineation of three-dimensional shallow geometry of active fault based on TLS and GPR: A case study of an normal fault on the north margin of Maoyaba Basin in Litang, Western Sichuan Province. Seismol. Geol. 2019, 41, 377–399. [Google Scholar]
- Zhang, D.; Li, J.; Wu, Z.; Ren, L. Reconstructing the Geometry of the Yushu Fault in the Tibetan Plateau Using TLS, GPR and Trenching. Remote Sens. 2023, 15, 1994. [Google Scholar] [CrossRef]
- Colucci, R.R.; Forte, E.; Boccali, C.; Dossi, M.; Lanza, L.; Pipan, M.; Guglielmin, M. Evaluation of Internal Structure, Volume and Mass of Glacial Bodies by Integrated LiDAR and Ground Penetrating Radar Surveys: The Case Study of Canin Eastern Glacieret (Julian Alps, Italy). Surv. Geophys. 2015, 36, 231–252. [Google Scholar] [CrossRef]
- Spahic, D.; Exner, U.; Behm, M.; Grasemann, B.; Haring, A. Structural 3D modeling using GPR in unconsolidated sediments (Vienna basin, Austria). Trab. Geol. 2010, 29, 250–252. [Google Scholar]
- Dlesk, A. Documentation of Historical Underground Object in Skorkov Village with Selected Measuring Methods, Data Analysis and Visualization. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 251–254. [Google Scholar] [CrossRef]
- Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections. J. Appl. Geophys. 2016, 127, 31–44. [Google Scholar] [CrossRef]
- Cowie, P.; Phillips, R.; Roberts, G.; Mccaffrey, K.; Wilkinson, M. Orogen-scale uplift drives episodic behaviour of earthquake faults. Sci. Rep. 2017, 7, 44858. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Shi, D.; Li, J.; Lu, Y. Integration of Terrestrial Laser Scanner (TLS) and Ground Penetrating Radar (GPR) to Characterize the Three-Dimensional (3D) Geometry of the Maoyaba Segment of the Litang Fault, Southeastern Tibetan Plateau. Remote Sens. 2022, 14, 6394. [Google Scholar] [CrossRef]
- Jol, H.M. Ground Penetrating Radar: Theory and Applications; Elsevier Science: Kidlington, UK, 2009. [Google Scholar]
- Liu, L.; Qian, R. Ground Penetrationg Radar: A critical tool in near-surface geophysics. Chin. J. Geophys. 2015, 58, 2606–2617. [Google Scholar]
- Zhang, D.; Gong, H.; Wu, Z.; Liu, S. Integrated ground penetrating radar and DGPS method for the continuous and long-distance GPR survey in the rugged terrain. Acta Geophys. 2022, 70, 537–546. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X. Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing. Int. J. Image Data Fusion 2017, 8, 1–31. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R. Multisource and Multitemporal Data Fusion in Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2018, 7, 6–39. [Google Scholar] [CrossRef]
- Liu, W.; Zang, Y.; Xiong, Z.; Bian, X.; Wen, C.; Lu, X.; Li, J. 3D building model generation from mls point cloud and 3D mesh using multi-source data fusion. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103171. [Google Scholar] [CrossRef]
- Tanajewski, D.; Bakuła, M. Application of Ground Penetrating Radar Surveys and GPS Surveys for Monitoring the Condition of Levees and Dykes. Acta Geophys. 2016, 64, 1093–1111. [Google Scholar] [CrossRef]
- Furgale, P.; Barfoot, T.D.; Ghafoor, N.; Williams, K.; Osinski, G. Field Testing of an Integrated Surface/Subsurface Modeling Technique for Planetary Exploration. Int. J. Robot. Res. 2010, 29, 1529–1549. [Google Scholar] [CrossRef]
- Li, S.; Cai, H.; Kamat, V.R. Uncertainty-aware geospatial system for mapping and visualizing underground utilities. Autom. Constr. 2015, 53, 105–119. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhang, D. Topographic correction of GPR profiles based on differential GPS. J. Geomech. 2016, 22, 771–777. [Google Scholar]
- Janos, D.; Kuras, P.; Ortyl, Ł. Evaluation of low-cost RTK GNSS receiver in motion under demanding conditions. Measurement 2022, 201, 111647. [Google Scholar] [CrossRef]
- Warchoł, A. Analysis of accuracy airborne, terrestrial and mobile laser scanning data as an introduction to their integration. Arch. Fotogram. Kartogr. Teledetekcji 2013, 25, 255–260. [Google Scholar]
- Axelsson, P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110–117. [Google Scholar]
- Gao, G.; Ma, H.; Zhang, L.; Fu, J. A Ground Filtering Algorithm for Airborne LiDAR in Consideration of Terraion Break Lines. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 474–478. [Google Scholar]
- Huang, J. Research and Application of Filtering Method for LiDAR Point Cloud and Image Matching Point Cloud; China University of Mining and Technology: Xuzhou, China, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Jia, D.; Ren, L.; Li, J.; Lu, Y.; Xu, H. Multisensor and Multiscale Data Integration Method of TLS and GPR for Three-Dimensional Detailed Virtual Reconstruction. Sensors 2023, 23, 9826. https://doi.org/10.3390/s23249826
Zhang D, Jia D, Ren L, Li J, Lu Y, Xu H. Multisensor and Multiscale Data Integration Method of TLS and GPR for Three-Dimensional Detailed Virtual Reconstruction. Sensors. 2023; 23(24):9826. https://doi.org/10.3390/s23249826
Chicago/Turabian StyleZhang, Di, Dinghan Jia, Lili Ren, Jiacun Li, Yan Lu, and Haiwei Xu. 2023. "Multisensor and Multiscale Data Integration Method of TLS and GPR for Three-Dimensional Detailed Virtual Reconstruction" Sensors 23, no. 24: 9826. https://doi.org/10.3390/s23249826