Pashto Handwritten Invariant Character Trajectory Prediction Using a Customized Deep Learning Technique
<p>Partial view of Pashto handwritten ligatures.</p> "> Figure 2
<p>Pashto handwritten word ligatures.</p> "> Figure 3
<p>Pashto handwritten character dysconnectivity.</p> "> Figure 4
<p>Valid and invalid hook detection and recognition.</p> "> Figure 5
<p>Customized 5-layer CNN model.</p> "> Figure 6
<p>General overview of the proposed framework.</p> "> Figure 7
<p>Dataset collection phase.</p> "> Figure 8
<p>Partial view of dataset without gridlines.</p> "> Figure 9
<p>Partial view of dataset cropping phase.</p> "> Figure 10
<p>Partial view of noise-free image dataset.</p> "> Figure 11
<p>VGG19 training and validation (<b>a</b>) accuracy and (<b>b</b>) loss.</p> "> Figure 12
<p>MobileNetV2 training and validation (<b>a</b>) accuracy and (<b>b</b>) loss.</p> "> Figure 13
<p>MobileNetV3Large training and validation (<b>a</b>) accuracy and (<b>b</b>) loss.</p> "> Figure 14
<p>Customized CNN training and validation (<b>a</b>) accuracy and (<b>b</b>) loss.</p> ">
Abstract
:1. Introduction
1.1. Pashto Language
1.2. Pashto Handwritings
1.3. Pashto Handwritten Characters and Ligatures Recognition
- ▪
- A novel deep-learning-based model is proposed, which is lightweight and efficiently classifies and recognizes variational Pashto handwritten characters and the different shapes of characters concerning connectivity with each other. The Pashto character may have two to four possible shapes to construct a complete word, i.e., isolated, middle, first, and end.
- ▪
- The second contribution is the construction of the Pashto handwritten character and ligature data set. The Pashto language is a low-resource language, and this paper also contributes to its resource generation. This dataset is different from Pashto character datasets because it also consists of the different shapes of a character.
- ▪
- The shapes of Pashto characters and ligatures have been classified and recognized with geometric variation, i.e., rotation, location shifting, and scaling.
- Invalid hooks exist, which affect the accuracy of previously published techniques.
- Salt and pepper noise is generated during scanning and the type of written material.
- Zig-zag motion is generated due to hand shivering and writing speed that changes the shape and features of a language base symbol.
- Invalid disconnected strokes.
- Rotated characters and ligature.
- Variant size of the same character and ligature.
- The difference in the handwriting of the same characters and ligature.
2. Related Work
3. The Proposed Approach
3.1. Pashto Handwritten Ligatures
3.2. Dataset
3.2.1. Templates Designed for Data Collection
3.2.2. Generation and Collection of Datasets
3.3. Preprocessing
3.3.1. Missing Trajectories
3.3.2. Removal of Noise
3.3.3. Minimization of Invalid Hooks
3.4. Customized Deep Learning-Based Techniques
3.5. Deep Learning Techniques Experimentation
4. Experimental Results and Discussion
4.1. Dataset Development Process
4.1.1. Template Design Phase for Dataset Collection
4.1.2. Template Printing and Required Classes
4.1.3. Data Collection
4.1.4. Gridline Removal Phase
4.1.5. Template Segmentation
4.1.6. Morphological Operation
4.2. Deep Learning Techniques Experimentation
4.2.1. VGG 19
4.2.2. MobileNetV2
4.2.3. MobileNetV3-Large
4.2.4. Proposed Technique
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amin, M.S.; Yasir, S.M.; Ahn, H. Recognition of pashto handwritten characters based on deep learning. Sensors 2020, 20, 5884. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, H.U.; Nazir, S. Offline pashto characters dataset for Ocr systems. Secur. Commun. Netw. 2021, 2021, 3543816. [Google Scholar] [CrossRef]
- Comparison, P.; View, P.; Journal, E.; View, H.; Isabel, M.; Garcia, M. Origins of Pashto Language and Phases of Its Literary Evolution; Punjab University: Lahore, Pakistan, 2016. [Google Scholar]
- Shabir, M.; Islam, N.; Jan, Z.; Khan, I.; Rahman, T.; Zeb, A.; Ahmad, S.; Abdelgawad, A.E.; Abdollahian, M. Real-time pashto handwritten character recognition using salient geometric and spectral features. IEEE Access 2021, 9, 160238–160248. [Google Scholar] [CrossRef]
- Huang, J.; Haq, I.U.; Dai, C.; Khan, S.; Nazir, S.; Imtiaz, M. Isolated handwritten pashto character recognition using a K-NN classification tool based on zoning and HOG feature extraction techniques. Complexity 2021, 2021, 5558373. [Google Scholar] [CrossRef]
- Ahmad, R.; Naz, S.; Afzal, M.Z.; Amin, S.H.; Breuel, T. Robust optical recognition of cursive pashto script using scale, rotation and location invariant approach. PLoS ONE 2015, 10, e0133648. [Google Scholar] [CrossRef] [PubMed]
- Jan, Z.; Shabir, M.; Khan, M.A.; Shah, S.I.; Baloch, B. Feature Used in Online Handwriting and Signature Recognition Systems: A survey. Sindh Univ. Res. J.-SURJ (Sci. Ser.) 2015, 47, 699–702. [Google Scholar]
- Ahmad, R.; Afzal, M.Z.; Rashid, S.F.; Liwicki, M.; Dengel, A.; Breuel, T. Recognizable units in Pashto language for OCR. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015. [Google Scholar] [CrossRef]
- Ahmad, R.; Amin, S.H.; Khan, M.A. Scale and rotation invariant recognition of cursive Pashto script using SIFT features. In Proceedings of the 2010 6th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 18–19 October 2010. [Google Scholar] [CrossRef]
- Ahmad, R.; Afzal, M.Z.; Rashid, S.F.; Naz, S. Semi-Automated Transcription Generation for Pashto Cursive Script. J. Appl. Environ. Biol. Sci. 2016, 6, 96–101. [Google Scholar]
- Ahmad, R.; Afzal, M.Z.; Rashid, S.F.; Liwicki, M.; Breuel, T.; Dengel, A. KPTI: Katib’s Pashto Text Imagebase and Deep Learning Benchmark. In Proceedings of the 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, 23–26 October 2016. [Google Scholar] [CrossRef]
- Mudaser, W.; Chan, J.H. Handwritten Pashto Characters Dataset for Optical Character Recognition. TechRxiv 2021. [Google Scholar] [CrossRef]
- Ahmad, N.; Khan, A.A.; Abid, S.A.R.; Yasir, M. Pashto Isolated Character Recognition Using K-NN Classifier. Sindh Univ. Res. J. 2013, 45, 679–682. [Google Scholar]
- Shabir, M.; Islam, N.; Ullah, N.; Rahman, A.; Hussain, H.; Ullah, K. Pashto Character Recognition for Low Recourse Devices in Unconstraint Environment. Int. J. Comput. Intell. Control 2021, 13, 127–137. [Google Scholar]
- Khan, S.; Nazir, S.; Khan, H.U.; Hussain, A. Pashto Characters Recognition Using Multi-Class Enabled Support Vector Machine. Comput. Mater. Contin. 2021, 67, 2831–2844. [Google Scholar] [CrossRef]
- Khan, S.; Hafeez, A.; Ali, H.; Nazir, S.; Hussain, A. Pioneer dataset and recognition of Handwritten Pashto characters using Convolution Neural Networks. Meas. Control 2020, 53, 2041–2054. [Google Scholar] [CrossRef]
- Uddin, I.; Ramli, D.A.; Khan, A.; Bangash, J.I.; Fayyaz, N.; Khan, A.; Kundi, M. Benchmark Pashto Handwritten Character Dataset and Pashto Object Character Recognition (OCR) Using Deep Neural Network with Rule Activation Function. Complexity 2021, 2021, 6669672. [Google Scholar] [CrossRef]
- Husnain, M.; Missen, M.M.S.; Mumtaz, S.; Jhanidr, M.Z.; Coustaty, M.; Luqman, M.M.; Ogier, J.-M.; Choi, G.S. Recognition of urdu handwritten characters using convolutional neural network. Appl. Sci. 2019, 9, 2758. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.H.; Adnan, A.; Waheed, A.; Zareei, M.; Aldosary, A.; Mohamed, E.M. Urdu ligature recognition system: An evolutionary approach. Comput. Mater. Contin. 2021, 66, 1347–1367. [Google Scholar] [CrossRef]
- Shabir, M.; Islam, N.; Jan, Z.; Khan, I. Transformation Invariant Pashto Handwritten Text Classification and Prediction. J. Circuits Syst. Comput. 2023, 32, 23500202. [Google Scholar] [CrossRef]
- Nazeri, K.; Ng, E.; Joseph, T.; Qureshi, F.Z.; Ebrahimi, M. EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning. arXiv 2019, arXiv:1901.00212. [Google Scholar]
- Luo, P.; Zhang, X.; Chang, Z.; Liu, W. Research on Salt and Pepper Noise Removal Method Based on Adaptive Fuzzy Median Filter. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; Volume 5, pp. 387–392. [Google Scholar] [CrossRef]
- Shabir, M.; Jan, Z.; Islam, N.; Khan, I.; Ali, G.; ElAffendi, M. TILPDeep: A Lightweight Deep Learning Technique for Handwritten Transformed Invariant Pashto Text Recognition. IEEE Access 2023, 11, 23393–23406. [Google Scholar] [CrossRef]
- Sreedhar, K. Enhancement of Images Using Morphological Transformations. Int. J. Comput. Sci. Inf. Technol. 2012, 4, 33–50. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, J.; Tan, J.; Li, D.; Zha, W. Deep CNN for removal of salt and pepper noise|Enhanced Reader. IET Image Process. 2019, 13, 1550–1560. [Google Scholar] [CrossRef]
- Bansal, M.; Kumar, M.; Sachdeva, M.; Mittal, A. Transfer learning for image classification using VGG19: Caltech-101 image data set. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 3609–3620. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.; Wang, W.; Chu, G.; Chen, L.; Chen, B.; Tan, M. Searching for MobileNetV3 Accuracy vs MADDs vs model size. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Nguyen, V.D.; Bui, N.D.; Do, H.K. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. Sensors 2022, 22, 7530. [Google Scholar] [CrossRef] [PubMed]
Techniques | Pashto Handwritten Character Recognition | Pashto Handwritten Ligatures Recognition | Geometric Variation | Lightweight Classifier | Deep-Learning-Based Classifier | Accuracy in % |
---|---|---|---|---|---|---|
Proposed Technique | Yes | Yes | Yes | Yes | Yes | Training = 93.98% Validation = 92.08% Testing = 92.99% |
[1] | Yes | No | Unknown | No | Yes | 99.6% |
[2] | No | No | No | No | No | No accuracy, only dataset |
[3] | No | No | No | No | No | Only a printed ligature dataset |
[4] | No | No | No | No | No | Not clear |
[5] | Yes | No | Yes | Yes | No | 93.5% on 730 characters only |
[6] | Yes | No | Yes | Yes | No | 97.5% |
[7] | Yes | No | No | No | Yes | 87.6% |
[8] | Yes | No | No | No | No | 80.34% |
[9] | No | No | Yes | No | No | Not Clear |
[10] | No | No | No | No | No | Not Clear |
[4] | No | No | Yes | No | No | 74% |
[12] | No | No | No | No | Yes | Not Clear |
[13] | No | No | Unknown | No | Yes | 9.2% |
[14] | Yes | No | No | No | No | Not Clear |
[15] | Yes | No | No | No | No | 74.8% |
[16] | Yes | No | No | No | No | 83% |
[17] | Yes | No | Unknown | No | No | 78% |
[18] | No | No | No | No | Yes | Not Clear |
[19] | No | No | No | No | No | 96.72% |
[20] | No | No | Yes | Unknown | Unknown | Not Clear |
Age (Years) | Males | Females | Samples | Designation |
---|---|---|---|---|
12–14 | 40 | 20 | 60 | Students |
13–14 | 42 | 18 | 60 | Students |
14–15 | 25 | 15 | 40 | Students |
28–50 | 30 | 10 | 40 | Teachers |
S: No. | Techniques | Training Loss | Training Accuracy | Validation Loss | Validation Accuracy | Testing Accuracy |
---|---|---|---|---|---|---|
1 | VGG19 | 0.1567 | 0.9467 | 0.7993 | 0.8085 | 0.7921 |
2 | MobileNetV2 | 0.2327 | 0.9328 | 0.6854 | 0.8024 | 0.8169 |
3 | MobileNetV3Large | 0.2799 | 0.9062 | 0.9823 | 0.7576 | 0.7999 |
4 | Customized CNN | 0.1783 | 0.9398 | 0.2573 | 0.9208 | 0.9299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaliq, F.; Shabir, M.; Khan, I.; Ahmad, S.; Usman, M.; Zubair, M.; Huda, S. Pashto Handwritten Invariant Character Trajectory Prediction Using a Customized Deep Learning Technique. Sensors 2023, 23, 6060. https://doi.org/10.3390/s23136060
Khaliq F, Shabir M, Khan I, Ahmad S, Usman M, Zubair M, Huda S. Pashto Handwritten Invariant Character Trajectory Prediction Using a Customized Deep Learning Technique. Sensors. 2023; 23(13):6060. https://doi.org/10.3390/s23136060
Chicago/Turabian StyleKhaliq, Fazli, Muhammad Shabir, Inayat Khan, Shafiq Ahmad, Muhammad Usman, Muhammad Zubair, and Shamsul Huda. 2023. "Pashto Handwritten Invariant Character Trajectory Prediction Using a Customized Deep Learning Technique" Sensors 23, no. 13: 6060. https://doi.org/10.3390/s23136060
APA StyleKhaliq, F., Shabir, M., Khan, I., Ahmad, S., Usman, M., Zubair, M., & Huda, S. (2023). Pashto Handwritten Invariant Character Trajectory Prediction Using a Customized Deep Learning Technique. Sensors, 23(13), 6060. https://doi.org/10.3390/s23136060