Effect of Protective Layer on the Performance of Monocrystalline Silicon Cell for Indoor Light Harvesting
<p>The structure of each monocrystalline PV panel. (<b>a</b>) a PET panel that consists of a solar cell between two layers of EVE above the PCB board and laminated with a PET film; (<b>b</b>) an ETFE panel that consists of a solar cell between two layers of EVE above the PCB board, and laminated with a film of ETFE, (<b>c</b>) an Epoxy resin panel that consists of two layers of epoxy encapsulating the solar cell above the PCB board.</p> "> Figure 2
<p>A 3D schematic illustrates the connections of the photovoltaic (PV) panel, positioned under the light source within the enclosed black box, to a variable resistance, ammeter, and voltameter, arranged on a breadboard to make up an indoor electrical characterization measurement system.</p> "> Figure 3
<p>A circuit diagram used in the electrical characterization measurement system consists of a PV panel, a voltmeter, an ammeter, and a variable resistance.</p> "> Figure 4
<p>A histogram of the differences in the mean values of the measured contact angles (CA) for the ETFE, epoxy resin, and PET panels.</p> "> Figure 5
<p>Water droplets on the surfaces of (<b>a</b>) PET panel, (<b>b</b>) ETFE panel and (<b>c</b>) Epoxy resin panel as captured from OCA camera.</p> "> Figure 6
<p>The reflection spectrum of PET, ETFE, and Epoxy resin protective layer PV panels in the wavelength range of 200–1000 nm, and the shaded area shows the behavior of each PV panel reflection in the typically LED emit region between 400 and 700 nm.</p> "> Figure 7
<p>The I-V curves for the three PV panels under LED illumination were (<b>a</b>) I-V for the PET panel, (<b>b</b>) curves for the ETFE panel and (<b>c</b>) for the epoxy panel.</p> "> Figure 8
<p>The I-V curves for the three PV panels under CFL illumination were (<b>a</b>) I-V for the PET panel, (<b>b</b>) curves for the ETFE panel and (<b>c</b>) for the epoxy panel.</p> "> Figure 9
<p>Output power P versus voltage V of the three PV panels under LED, (<b>a</b>) P-V for the PET panel, (<b>b</b>) curves for the ETFE panel and (<b>c</b>) for the epoxy panel.</p> "> Figure 10
<p>Output power P versus voltage V of the three PV panels under CFL, (<b>a</b>) P-V for the PET panel, (<b>b</b>) curves for the ETFE panel and (<b>c</b>) for the epoxy panel.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. PV Panels
2.2. Contact Angle (OCA)
2.3. Reflection Spectroscopy
2.4. Characterization Measurement System
3. Results and Discussion
3.1. Contact Angle Comparison: OCA Results
3.2. Reflection Mesurments
3.3. Electrical Charectraization
3.3.1. Current–Voltage Analysis under Light Illumination of Different Intensities
3.3.2. Comparison of PV Panels
4. Conclusions
5. Recommendations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviations
A | Ampere |
CdTe | Cadmium telluride |
CIGS | Copper indium gallium selenide |
CFLs | Compact fluorescent lamps |
DSC | Dye-sensitized solar cell |
ETFE | Ethylene–tetrafluoroethylene copolymer |
FF | Fill Factor |
Imax | Maximum current |
IoT | Internet of Things |
ISC | Short-circuit current |
KΩ | Kilo-ohm |
LEDs | Light-emitting diodes |
lx | Lumen per square meter |
OCA | Optical contact angle |
P | Power |
Pmax | Maximum electric power |
PET | Polyethylene terephthalate |
PV | Photovoltaic |
R | Load resistance |
TCO | Transparent conductive oxide |
V | Voltage |
Vmax | Maximum voltage |
VOC | Open circuit voltage |
W | Watt |
% | Percentage |
References
- Agrawal, Y.; Bhagoria, J.; Gautam, A.; Chaurasiya, P.K.; Dhanraj, J.A.; Solomon, J.M.; Salyan, S. Experimental evaluation of hydrothermal performance of solar air heater with discrete roughened plate. Appl. Therm. Eng. 2022, 211, 118379. [Google Scholar] [CrossRef]
- Jayakumar, H.; Lee, K.; Lee, W.S.; Raha, A.; Kim, Y.; Raghunathan, V. Powering the internet of things. In Proceedings of the 2014 International Symposium on Low Power Electronics and Design, La Jolla, CA, USA, 11–13 August 2014; pp. 375–380. [Google Scholar]
- Matiko, J.W.; Grabham, N.J.; Beeby, S.P.; Tudor, M.J. Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 2013, 25, 012002. [Google Scholar] [CrossRef]
- Reich, N.v.; Van Sark, W.; Turkenburg, W. Charge yield potential of indoor-operated solar cells incorporated into Product Integrated Photovoltaic (PIPV). Renew. Energy 2011, 36, 642–647. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. PV Status Report 2012; Joint Research Centre of the European Commission, Institute for Energy and Transport: Brussels, Belgium, 2012; p. 118. [Google Scholar]
- Pierro, M.; Bucci, F.; Cornaro, C. Full characterization of photovoltaic modules in real operating conditions: Theoretical model, measurement method and results. Prog. Photovolt. Res. Appl. 2015, 23, 443–461. [Google Scholar] [CrossRef]
- Nerat, M. Copper–indium–gallium–selenide (CIGS) solar cells with localized back contacts for achieving high performance. Sol. Energy Mater. Sol. Cells 2012, 104, 152–158. [Google Scholar] [CrossRef]
- Kapadnis, R.; Bansode, S.; Supekar, A.; Bhujbal, P.; Kale, S.; Jadkar, S.; Pathan, H. Cadmium telluride/cadmium sulfide thin films solar cells: A review. ES Energy Environ. 2020, 10, 3–12. [Google Scholar] [CrossRef]
- Aoki, Y. Photovoltaic performance of Organic Photovoltaics for indoor energy harvester. Org. Electron. 2017, 48, 194–197. [Google Scholar] [CrossRef]
- Gottschalg, R.; Del Cueto, J.; Betts, T.R.; Infield, D. Seasonal performance of a-Si single-and multijunction modules in two locations. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1484–1487. [Google Scholar]
- Ishii, T.; Takashima, T.; Otani, K. Long-term performance degradation of various kinds of photovoltaic modules under moderate climatic conditions. Prog. Photovolt. Res. Appl. 2011, 19, 170–179. [Google Scholar] [CrossRef]
- Bonilla Castro, J.; Schweiger, M.; Moser, D.; Tanahashi, T.; King, B.H.; Friesen, G.; Haitao, L.; French, R.; Bruckman, L.; Müller, B. Climatic Rating of Photovoltaic Modules: Different Technologies for Various Operating Conditions; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Sheik, M.A.; Aravindan, M.; Beemkumar, N.; Chaurasiya, P.K.; Jilte, R.; Shaik, S.; Afzal, A. Investigation on the thermal management of solar photo voltaic cells cooled by phase change material. J. Energy Storage 2022, 52, 104914. [Google Scholar] [CrossRef]
- Reale, A.; Cinà, L.; Malatesta, A.; De Marco, R.; Brown, T.M.; Di Carlo, A. Estimation of Energy Production of Dye-Sensitized Solar Cell Modules for Building-Integrated Photovoltaic Applications. Energy Technol. 2014, 2, 531–541. [Google Scholar] [CrossRef]
- Zardetto, V.; Mincuzzi, G.; De Rossi, F.; Di Giacomo, F.; Reale, A.; Di Carlo, A.; Brown, T. Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells. Appl. Energy 2014, 113, 1155–1161. [Google Scholar] [CrossRef]
- Metz, A.; Fischer, M.; Trube, J. Recent results. In International Technology Roadmap for Photovoltaics (ITRPV) 8th Edition, Proceedings of the Manufacturing in Europe Conference, Brussels, Belgium, 19 May 2017; VDMA: Frankfurt, Germany, 2017. [Google Scholar]
- Ishii, T.; Masuda, A. Annual degradation rates of recent crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 2017, 25, 953–967. [Google Scholar] [CrossRef]
- Battaglia, C.; Cuevas, A.; De Wolf, S. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576. [Google Scholar] [CrossRef]
- Snyder, G.H.; Matichenkov, V.V.; Datnoff, L.E. Silicon. In Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2016; pp. 567–584. [Google Scholar]
- Mughal, S.; Sood, Y.R.; Jarial, R. A review on solar photovoltaic technology and future trends. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2018, 4, 227–235. [Google Scholar]
- Griffini, G.; Turri, S. Polymeric materials for long-term durability of photovoltaic systems. J. Appl. Polym. Sci. 2016, 133, 11. [Google Scholar] [CrossRef]
- Lamnatou, C.; Moreno, A.; Chemisana, D.; Reitsma, F.; Clariá, F. Ethylene tetrafluoroethylene (ETFE) material: Critical issues and applications with emphasis on buildings. Renew. Sustain. Energy Rev. 2018, 82, 2186–2201. [Google Scholar] [CrossRef]
- Gaddam, S.K.; Pothu, R.; Boddula, R. Advanced polymer encapsulates for photovoltaic devices—A review. J. Mater. 2021, 7, 920–928. [Google Scholar] [CrossRef]
- Raman, R.K.; Thangavelu, S.A.G.; Venkataraj, S.; Krishnamoorthy, A. Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present. Renew. Sustain. Energy Rev. 2021, 151, 111608. [Google Scholar] [CrossRef]
- Foti, M.; Tringali, C.; Battaglia, A.; Sparta, N.; Lombardo, S.; Gerardi, C. Efficient flexible thin film silicon module on plastics for indoor energy harvesting. Sol. Energy Mater. Sol. Cells 2014, 130, 490–494. [Google Scholar] [CrossRef]
- De Rossi, F.; Pontecorvo, T.; Brown, T.M. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 2015, 156, 413–422. [Google Scholar] [CrossRef]
- Castro-Hermosa, S.; Lucarelli, G.; Top, M.; Fahland, M.; Fahlteich, J.; Brown, T.M. Perovskite photovoltaics on roll-to-roll coated ultra-thin glass as flexible high-efficiency indoor power generators. Cell Rep. Phys. Sci. 2020, 1, 100045. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Edalati, S.; Ameri, M.; Iranmanesh, M. Comparative performance investigation of mono-and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates. Appl. Energy 2015, 160, 255–265. [Google Scholar] [CrossRef]
- Hegedus, S.; Luque, A. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Schubert, E.F. Human Eye Sensitivity and Photometric Quantities in Light-Emitting Diodes; Cambridge University Press: New York, NY, USA, 2006; pp. 275–291. [Google Scholar]
- Yuan, R.; Wu, S.; Yu, P.; Wang, B.; Mu, L.; Zhang, X.; Zhu, Y.; Wang, B.; Wang, H.; Zhu, J. Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings. ACS Appl. Mater. Interfaces 2016, 8, 12481–12493. [Google Scholar] [CrossRef]
- Lisco, F.; Bukhari, F.; Jones, L.O.; Law, A.M.; Walls, J.M.; Ballif, C. ETFE and its Role in the Fabrication of Lightweight c-Si Solar Modules. IEEE J. Photovolt. 2023, 13, 349–354. [Google Scholar] [CrossRef]
- Wirth, H. Crystalline silicon PV module technology. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2013; Volume 89, pp. 135–197. [Google Scholar]
- Barta, D.; Tibbitts, T.; Bula, R.; Morrow, R. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 1992, 12, 141–149. [Google Scholar] [CrossRef]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Azim, O.; Yahia, I.S.; Saker, G. Characterization of mono-crystalline silicon solar cell. Appl. Sol. Energy 2014, 50, 146–155. [Google Scholar] [CrossRef]
- Yahia, I.; Farag, A.; Jafer, R.; Iqbal, J.; Zahran, H.; Chusnutdinow, S.; Wojtowicz, T.; Karczewski, G. Electrical, photovoltaic and photosensitivity characteristics of p-ZnTe: N/CdTe: Mg/n-CdTe: I/GaAs for photodiode applications. Mater. Sci. Semicond. Process. 2017, 67, 33–40. [Google Scholar] [CrossRef]
- Jum’h, I.; Abd El-Sadek, M.S.; Al-Taani, H.; Yahia, I.S.; Karczewski, G. Influence of Illumination on the Electrical Properties of p-(ZnMgTe/ZnTe:N)/CdTe/n-(CdTe:I)/GaAs Heterojunction Grown by Molecular Beam Epitaxy (MBE). J. Electron. Mater. 2017, 46, 1061–1066. [Google Scholar] [CrossRef]
- De Rossi, F.; Brown, T.; Reale, A.; Di Carlo, A. Large-Area Electrodeposition of Counterelectrodes Utilizing the Same Integrated Conductive Grid for Fabrication of Parallel Flexible Dye Solar Cell Modules. IEEE J. Photovolt. 2014, 4, 1552–1559. [Google Scholar] [CrossRef]
- Reich, N.; van Sark, W.; Alsema, E.A.; Lof, R.W.; Schropp, R.E.I.; Sinke, W.; Turkenburg, W.C. Crystalline silicon cell performance at low light intensities. Sol. Energy Mater. Sol. Cells 2009, 93, 1471–1481. [Google Scholar] [CrossRef]
- D’Ercole, D.; Dominici, L.; Brown, T.; Michelotti, F.; Reale, A.; Di Carlo, A. Angular response of dye solar cells to solar and spectrally resolved light. APL Org. Electron. Photonics 2011, 4, 213301. [Google Scholar] [CrossRef]
- Ylikunnari, M.; Välimäki, M.; Väisänen, K.-L.; Kraft, T.M.; Sliz, R.; Corso, G.; Po, R.; Barbieri, R.; Carbonera, C.; Gorni, G. Flexible OPV modules for highly efficient indoor applications. Flex. Print. Electron. 2020, 5, 014008. [Google Scholar] [CrossRef]
Layer | Technology | Contact Angle (°) | Reference |
---|---|---|---|
Glass/ITO | PSC | 29 | [27] |
PET/ITO | PSC | 93 | [27] |
FG/ITO | PSC | 60 | [27] |
ETFE | Poly c.Si | 110 | [33] |
Epoxy | Mono c.Si | 60.3 | This work |
PET | Mono c.Si | 46.8 | This work |
ETFE | Mono c.Si | 77.7 | This work |
Light Source | Illumination, Lux | Isc (10−4, A) ± 0.04 | Voc, V ± 0.09 | Pmax (10−4 W) | FF, % | Imax (10−4, A) | Vmax, V | Jmax, (A/cm2) | R (KΩ.cm−2) |
---|---|---|---|---|---|---|---|---|---|
LED | 7200 | 9.39 | 4.58 | 25.4 | 59.2 | 7.71 | 3.3 | 0.00485 | 944 |
LED | 1550 | 1.88 | 3.35 | 2.96 | 47 | 1.49 | 2.26 | 0.00094 | 3575 |
LED | 630 | 0.78 | 2.78 | 0.86 | 39 | 0.54 | 1.56 | 0.00034 | 8185 |
LED | 220 | 0.28 | 1.63 | 0.16 | 35.9 | 0.18 | 0.91 | 0.00011 | 14,398 |
CFL | 2200 | 4.18 | 3.89 | 8.71 | 53.6 | 3.1 | 2.81 | 0.00195 | 1995 |
CFL | 1384 | 1.68 | 1.95 | 1.35 | 41.2 | 1.07 | 1.26 | 0.00067 | 2898 |
Light Source | Illumination, Lux | Isc (10−4, A) ± 0.06 | Voc, V ± 0.15 | Pmax (10−4 W) | FF, % | Imax (10−4, A) | Vmax, V | Jmax, (A/cm2) | R (KΩ.cm−2) |
---|---|---|---|---|---|---|---|---|---|
LED | 7200 | 10.09 | 4.08 | 27.7 | 67.3 | 8.4 | 3.28 | 0.00528 | 772 |
LED | 1550 | 2.37 | 3.28 | 4.3 | 55.8 | 1.92 | 2.26 | 0.00120 | 2716 |
LED | 630 | 0.85 | 2.63 | 1.1 | 49.8 | 0.67 | 1.66 | 0.00042 | 6241 |
LED | 220 | 0.3 | 1.63 | 0.25 | 35.9 | 0.23 | 1.1 | 0.00014 | 11,268 |
CFL | 2200 | 5.1 | 3.8 | 11.1 | 57 | 4.17 | 2.65 | 0.00262 | 1449 |
CFL | 1384 | 2.15 | 3.12 | 3.6 | 53.3 | 2.15 | 2.09 | 0.00135 | 2307 |
Light Source | Illumination, Lux | Isc (10−4, A) ± 0.03 | Voc, V ± 0.1 | Pmax (10−4 W) | FF, % | Imax (10−4, A) | Vmax, V | Jmax, (A/cm2) | R (KΩ.cm−2) |
---|---|---|---|---|---|---|---|---|---|
LED | 7200 | 9.11 | 4.51 | 24.58 | 59.8 | 7.68 | 3.2 | 0.00483 | 934 |
LED | 1550 | 2.23 | 3.44 | 4.11 | 53.6 | 1.72 | 2.39 | 0.00108 | 3180 |
LED | 630 | 0.78 | 2.91 | 1.04 | 45.7 | 0.58 | 1.79 | 0.00036 | 7977 |
LED | 220 | 0.28 | 1.93 | 0.23 | 42.3 | 0.18 | 1.27 | 0.00011 | 17,048 |
CFL | 2200 | 4.3 | 3.97 | 9.65 | 56.5 | 3.51 | 2.75 | 0.00221 | 1798 |
CFL | 1384 | 1.96 | 3.54 | 3.64 | 52.4 | 1.46 | 2.49 | 0.00092 | 3855 |
Protective Layer | Isc (×10−4 A) | Voc (V) | Pmax (×10−4 W) | FF (%) | R (KΩ.cm−2) |
---|---|---|---|---|---|
PET | 0.28–9.39 | 1.63–4.58 | 0.16–25.4 | 35.9–59 | 14,398–944 |
ETFE | 0.3–10.09 | 1.63–4.08 | 0.25–27.7 | 35.9–67.3 | 11,268–772 |
Epoxy resin | 0.28–9.11 | 1.93–4.51 | 0.23–24.58 | 42.3–59.8 | 17,048–934 |
Front Layer | Technology | Ev (lx) | Voc (V) | FF, % | Area (cm2) | Fabrication | Reference |
---|---|---|---|---|---|---|---|
PET | PSC | 200 | 0.81 | 49.6 | 0.1 | Lab | [27] |
FG | PSC | 200 | 0.79 | 65.9 | 0.1 | Lab | [27] |
(TCO) | a.Si | 300 | 8 | _ | 30 | Lab | [25] |
Glass | a.Si | 200 | 2.34 | 57.5 | 3.18 | Manufactured (Market) | [26] |
PET | DSSC | 200 | 0.54 | 90.7 | 0.25 | Lab | [26] |
FTO/PDOT | GaAs | 200 | 0.87 | 75 | 50 | Lab | [28] |
PET | OPV | 200 | 0.55 | 56 | - | Lab | [43] |
PET | Mono c.Si | 220 | 1.63 | 35.9 | 2.5 | Manufactured (Market) | this work |
ETFE | Mono c.Si | 220 | 1.63 | 35.9 | 2.5 | Manufactured (Market) | this work |
EPOXY | Mono c.Si | 220 | 1.93 | 42.3 | 2.5 | Manufactured (Market) | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammam, T.M.; Alhalaili, B.; Abd El-sadek, M.S.; Abuelwafa, A.A. Effect of Protective Layer on the Performance of Monocrystalline Silicon Cell for Indoor Light Harvesting. Sensors 2023, 23, 7995. https://doi.org/10.3390/s23187995
Hammam TM, Alhalaili B, Abd El-sadek MS, Abuelwafa AA. Effect of Protective Layer on the Performance of Monocrystalline Silicon Cell for Indoor Light Harvesting. Sensors. 2023; 23(18):7995. https://doi.org/10.3390/s23187995
Chicago/Turabian StyleHammam, Tarek M., Badriyah Alhalaili, M. S. Abd El-sadek, and Amr Attia Abuelwafa. 2023. "Effect of Protective Layer on the Performance of Monocrystalline Silicon Cell for Indoor Light Harvesting" Sensors 23, no. 18: 7995. https://doi.org/10.3390/s23187995
APA StyleHammam, T. M., Alhalaili, B., Abd El-sadek, M. S., & Abuelwafa, A. A. (2023). Effect of Protective Layer on the Performance of Monocrystalline Silicon Cell for Indoor Light Harvesting. Sensors, 23(18), 7995. https://doi.org/10.3390/s23187995