Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam
<p>SEM image of silver triangular nanoplates on the surface of polyurethane foam (magnification 50,000 times).</p> "> Figure 2
<p>(<b>a</b>) Diffuse reflectance spectra of silver triangular nanoplates on the surface of polyurethane foam. Specific adsorption values <span class="html-italic">a</span>, µmol Ag g<sup>–1</sup>: 4.6 (1), 9.7 (2), 14.2 (3), 17.0 (4), 18.3 (5); (<b>b</b>) Dependence of the change in the Gurevich–Kubelka–Munk function at 625 nm on the specific adsorption.</p> "> Figure 3
<p>(<b>a</b>) Diffuse reflectance spectra of AgTNPs/PUF composite at different concentrations of cysteine. <span class="html-italic">c</span>(cysteine), μM = 0 (1), 17 (2), 35 (3), <span class="html-italic">c</span>(AgTNPs) = 17 μmol Ag g<sup>–1</sup>, pH 5.0, <span class="html-italic">t</span> = 40 min. Inset: change in the color of the nanocomposite upon interaction with thiols; (<b>b</b>) Change in the diffuse reflectance of AgTNPs/PUF composite depending on the nature of the organic thiol. <span class="html-italic">c</span>(AgTNPs) = 17 μmol Ag g<sup>–1</sup>, <span class="html-italic">c</span>(thiol) = 0.2 mg L<sup>–1</sup>, pH 5.0, <span class="html-italic">t</span> = 40 min.</p> "> Figure 4
<p>Probable mechanism of silver triangular nanoplate aggregation under the influence of thiols (in the example of cysteine, Cit is the citrate-ion residue).</p> "> Figure 5
<p>Change in the diffuse reflectance of AgTNPs/PUF composite in a solution containing cysteamine (1), cysteine (2), 3-mercaptopropionic acid (3), and 2-mercaptoethanol (4), depending on the interaction time. <span class="html-italic">c</span>(AgTNPs) = 17 μmol Ag g<sup>–1</sup>, pH 5.0. (1) <span class="html-italic">c</span>(cysteamine) = 2 μM; (2) <span class="html-italic">c</span>(cysteine) = 10 μM; (3) <span class="html-italic">c</span>(3-MPA) = 10 µM; (4) <span class="html-italic">c</span>(2-ME) = 5 μM.</p> "> Figure 6
<p>Change in the diffuse reflectance of AgTNPs/PUF composite in a solution containing cysteamine (1), cysteine (2), 3-mercaptopropionic acid (3) and 2-mercaptoethanol (4), depending on the pH value. <span class="html-italic">c</span>(AgTNPs) = 17 μmol Ag g<sup>–1</sup>, <span class="html-italic">t</span> = 40 min. (1) <span class="html-italic">c</span>(cysteamine) = 2 μM; (2) <span class="html-italic">c</span>(cysteine) = 10 μM; (3) <span class="html-italic">c</span>(3-MPA) = 10 µM; (4) <span class="html-italic">c</span>(2-ME) = 5 μM.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of Label-Free AgTNPs
2.3. Preparation of AgTNPs/PUF Composite Material
2.4. Diffuse Reflection Measurement
2.5. Procedures
2.6. Sample Pretreatment
3. Results and Discussion
3.1. Characteristics of AgTNPs/PUF
3.2. Interaction between AgTNPs/PUF and Organic Thiols
3.2.1. Effect of Interaction Time
3.2.2. Effect of pH
3.3. Determination of Organic Thiols Using Solid-Phase Spectrometry
3.3.1. Analytical Performance
3.3.2. Interference Studies
3.3.3. Sample Analysis
3.3.4. Comparison with Existing Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, M.J.A.; Reis, B.F. Photogeneration of silver nanoparticles induced by UV radiation and their use as a sensor for the determination of chloride in fuel ethanol using a flow-batch system. Talanta 2019, 201, 373–378. [Google Scholar] [CrossRef]
- Papaioannou, G.C.; Karastogianni, S.; Girousi, S. Development of an electrochemical sensor using a modified carbon paste electrode with silver nanoparticles capped with saffron for monitoring mephedrone. Sensors 2022, 22, 1625. [Google Scholar] [CrossRef] [PubMed]
- Eremina, O.E.; Yarenkov, N.R.; Bikbaeva, G.I.; Kapitanova, O.O.; Samodelova, M.V.; Shekhovtsova, T.N.; Kolesnikov, I.E.; Syuy, A.V.; Arsenin, A.V.; Volkov, V.S.; et al. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta 2023, 266, 124970. [Google Scholar] [CrossRef] [PubMed]
- Tsogas, G.Z.; Vlessidis, A.G.; Giokas, D.L. Analyte-mediated formation and growth of nanoparticles for the development of chemical sensors and biosensors. Microchim. Acta 2022, 189, 434. [Google Scholar] [CrossRef] [PubMed]
- Furletov, A.A.; Apyari, V.V.; Garshev, A.V.; Dmitrienko, S.G.; Zolotov, Y.A. Fast and sensitive determination of bioflavonoids using a new analytical system based on label-free silver triangular nanoplates. Sensors 2022, 22, 843. [Google Scholar] [CrossRef]
- Hamid, M.A.; Habib, A.; Mabrouk, M.; Hammad, S.; Elshahawy, M. Dual fluorescence-colorimetric sensor based on silver nanoparticles for determination of tobramycin in its pharmaceutical preparations. Spectrochim. Acta A 2023, 303, 123172. [Google Scholar] [CrossRef]
- Acosta, M.; Vargas, I.A.; Deluigi, M.T.; Fernández, L.P.; Talio, M.C. Surfactant coated silver nanoparticles as manganese fluorescent sensor. Manganese quantification in argentinian wines. Microchem. J. 2023, 193, 108969. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.; Zhang, W.; Wu, W.; Zhao, X.; Chen, N.; Zhang, M.; Guo, F.; Qin, Y. Visual determination of azodicarbonamide in flour by label-free silver nanoparticle colorimetry. Food Chem. 2021, 337, 127990. [Google Scholar] [CrossRef]
- Yao, H.; Shiratsu, T. Multipolar surface magnetoplasmon resonances in triangular silver nanoprisms studied by MCD spectroscopy. J. Phys. Chem. C 2017, 121, 761–768. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Iranifam, M. Chemiluminescence reactions enhanced by silver nanoparticles and silver alloy nanoparticles: Applications in analytical chemistry. Trends Anal. Chem. 2016, 82, 126–142. [Google Scholar] [CrossRef]
- Shariati-Rad, M.; Heidari, S. Classification and determination of total hardness of water using silver nanoparticles. Talanta 2020, 219, 121297. [Google Scholar] [CrossRef] [PubMed]
- Della Pelle, F.; Scroccarello, A.; Scarano, S.; Compagnone, D. Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Anal. Chim. Acta 2019, 1051, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, K.; Sasikumar, T.; Campos, C.H.; Ilanchelian, M.; Mangalaraja, R.V.; Torres, C.C. Colorimetric determination of cysteamine based on the aggregation of polyvinylpyrrolidone-stabilized silver nanoparticles. Spectrochim. Acta A 2020, 236, 118281. [Google Scholar] [CrossRef]
- Trisaranakul, W.; Chompoosor, A.; Maneeprakorn, W.; Nacapricha, D.; Choengchan, N.; Teerasong, S. A simple and rapid method based on anti-aggregation of silver nanoparticles for detection of poly(diallyldimethylammonium chloride) in tap water. Anal. Sci. 2016, 32, 769–774. [Google Scholar] [CrossRef]
- Wang, C.; Bi, X.; Wang, M.; Zhao, X.; Lin, Y. Dual-channel online optical detection platform integrated with a visible light absorption approach for continuous and simultaneous in vivo monitoring of ascorbic acid and copper(II) ions in a living rat brain. Anal. Chem. 2019, 91, 16010–16016. [Google Scholar] [CrossRef]
- Zhou, S.; Li, J.; Gilroy, K.D.; Tao, J.; Zhu, C.; Yang, X.; Sun, X.; Xia, Y. Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 2016, 10, 9861–9870. [Google Scholar] [CrossRef]
- Gheitaran, R.; Afkhami, A.; Madrakian, T. PVP-coated silver nanocubes as RRS probe for sensitive determination of Haloperidol in real samples. Spectrochim. Acta A 2022, 272, 121025. [Google Scholar] [CrossRef]
- Sharma, D.; Rakshana, D.A.; Balakrishnan, R.M.; JagadeeshBabu, P.E. One step synthesis of silver nanowires using fructose as a reducing agent and its antibacterial and antioxidant analysis. Mater. Res. Express 2019, 6, 075050. [Google Scholar] [CrossRef]
- Kim, B.-H.; Lee, J.-S. One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater. Chem. Phys. 2015, 149–150, 678–685. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Fouda, A. Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int. J. Biol. Macromol. 2018, 106, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Gorbunova, M.O.; Shevchenko, A.V.; Apyari, V.V.; Furletov, A.A.; Volkov, P.A.; Garshev, A.V.; Dmitrienko, S.G. Selective determination of chloride ions using silver triangular nanoplates and dynamic gas extraction. Sens. Actuator B Chem. 2018, 256, 699–705. [Google Scholar] [CrossRef]
- Furletov, A.A.; Apyari, V.V.; Garshev, A.V.; Dmitrienko, S.G. A comparative study on the oxidation of label-free silver triangular nanoplates by peroxides: Main effects and sensing applications. Sensors 2020, 20, 4832. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, X.; Yu, F.; Liu, Y.; Yue, Q.; Yang, P.; Liu, Y. Antagonistic action regulated anti-etching colorimetric detection of thiram residue in soil based on triangular silver nanoplates. Sens. Actuator B Chem. 2021, 344, 130304. [Google Scholar] [CrossRef]
- Furletov, A.A.; Apyari, V.V.; Zaytsev, V.D.; Sarkisyan, A.O.; Dmitrienko, S.G. Silver triangular nanoplates: Synthesis and application as an analytical reagent in optical molecular spectroscopy. A review. Trends Anal. Chem. 2023, 166, 117202. [Google Scholar] [CrossRef]
- Xavier SS, J.; Karthikeyan, C.; Kim, A.R.; Yoo, D.J. Colorimetric detection of melamine using β-cyclodextrin-functionalized silver nanoparticles. Anal. Methods 2014, 6, 8165–8172. [Google Scholar] [CrossRef]
- Ramachandran, K.; Kalpana, D.; Sathishkumar, Y.; Lee, Y.S.; Ravichandran, K. A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection. J. Ind. Eng. Chem. 2016, 35, 29–35. [Google Scholar] [CrossRef]
- Babu, K.J.; Zahoor, A.; Nahm, K.S.; Aziz, M.A.; Vengadesh, P.; Kumar, G.G. Manganese dioxide–vulcan carbon@silver nanocomposites for the application of highly sensitive and selective hydrazine sensors. New J. Chem. 2016, 40, 7711–7720. [Google Scholar] [CrossRef]
- Toone, E.J. Advances in Enzymology and Related Areas of Molecular Biology; Interscience Publishers, Inc.: New York, NY, USA, 1951; Volume 11, 472p. [Google Scholar]
- Szerlauth, A.; Szalma, L.; Muráth, S.; Sáringer, S.; Varga, G.; Li, L.; Szilágyi, I. Nanoclay-based sensor composites for the facile detection of molecular antioxidants. Analyst 2022, 147, 1367–1374. [Google Scholar] [CrossRef]
- Sultana, N.; Nayem, S.M.A.; Shah, S.S.; Kang, H.; Mazumder, M.A.J.; Awal, A.; Roy, S.C.; Uddin, J.; Aziz, M.A.; Ahammad, A.J.S. Synthesis and synergistic effect of positively charged jute carbon supported AuNPs coated polymer nanocomposite for selective determination of nitrite. Mater. Sci. Eng. B 2023, 295, 116572. [Google Scholar] [CrossRef]
- Azzam, E.M.S.; Elsofany, W.I.; Alrashdi, G.K.; Alenezi, K.M.; Alsukaibi, A.K.D.; Latif, S.; Abdulaziz, F.; Atta, A.M. New route for removal of Cu(II) using fabricated nanocomposite based on cationic surfactant/Ag-nanoparticles/silica gel. Arab. J. Chem. 2022, 15, 103897. [Google Scholar] [CrossRef]
- Feiteira, F.N.; dos Reis, L.G.T.; Cassella, R.J. Solventless determination of total anionic surfactants in waters using polyurethane foam as support and analysis of digital images. Microchem. J. 2015, 119, 44–50. [Google Scholar] [CrossRef]
- Métraux, G.S.; Mirkin, C.A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 2005, 17, 412–415. [Google Scholar] [CrossRef]
- Apyari, V.V.; Dmitrienko, S.G.; Zolotov, Y.A. Unusual application of common digital devices: Potentialities of Eye-One Pro mini-spectrophotometer—A monitor calibrator for registration of surface plasmon resonance bands of silver and gold nanoparticles in solid matrices. Sens. Actuators B Chem. 2013, 188, 1109–1115. [Google Scholar] [CrossRef]
- Furletov, A.A.; Apyari, V.V.; Garshev, A.V.; Volkov, P.A.; Dmitrienko, S.G. Silver triangular nanoplates as a colorimetric probe for sensing thiols: Characterization in the interaction with structurally related thiols of different functionality. Microchem. J. 2019, 147, 979–984. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Gao, Y.; Gong, A.; Zhang, Y.; Hosmane, N.S.; Shen, Z.; Wu, A. «Red-to-blue» colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nanoscale 2014, 6, 10631–10637. [Google Scholar] [CrossRef]
- Rejithamol, R.; Keerthi, P.R.; Beena, S. A novel disposable pencil graphite electrode for the voltammetric determination of cysteamine. Mater. Today 2019, 18, 5081–5086. [Google Scholar]
- Mu, X.; Wu, M.; Zhang, B.; Liu, X.; Xu, S.; Huang, Y.; Wang, X.; Song, D.; Ma, P.; Sun, Y. A sensitive «off-on» carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta 2020, 221, 121463. [Google Scholar] [CrossRef]
- Keyvanfard, M.; Ahmadi, M.; Karimi, F.; Alizad, K. Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Chin. Chem. Lett. 2014, 25, 1244–1246. [Google Scholar] [CrossRef]
- Ngamdee, K.; Kulchat, S.; Tuntulani, T.; Ngeontae, W. Fluorescence sensor based on D-penicillamine capped cadmium sulfide quantum dots for the detection of cysteamine. J. Lumin. 2017, 187, 260–268. [Google Scholar] [CrossRef]
- Chwatko, G.; Bald, E. Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta 2000, 52, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H.; Hao, Y.; Yang, S.; Tian, H.; Sun, B.; Liu, Y. A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples. Food. Chem. 2018, 262, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Bulatov, A.V.; Petrova, A.V.; Vishnikin, A.B.; Moskvin, L.N. Stepwise injection spectrophotometric determination of cysteine in biologically active supplements and fodders. Microchem. J. 2013, 110, 369–373. [Google Scholar] [CrossRef]
- Lee, P.T.; Thomson, J.E.; Karina, A.; Salter, C.; Johnston, C.; Davies, S.G.; Compton, R.G. Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode. Analyst 2015, 140, 236–242. [Google Scholar] [CrossRef]
- Apyari, V.V.; Arkhipova, V.V.; Isachenko, A.I.; Volkov, P.A.; Dmitrienko, S.G.; Torocheshnikova, I.I. Label-free gold nanoparticle-based sensing of cysteine: New peculiarities and prospects. Sens. Actuators B Chem. 2018, 260, 953–961. [Google Scholar] [CrossRef]
Chemical Name | MW, g mol–1 | Structure | Form of Existence of the Compound at pH 5 * |
---|---|---|---|
Cysteamine | 77.15 | Cation | |
Cysteine | 121.16 | Zwitterion | |
3-Mercaptopropionic acid (3-MPA) | 106.14 | Anion | |
2-Mercaptoethanol (2-ME) | 78.13 | Uncharged molecule |
Analyte | Calibration Curve Equation (c, μM) | LOD, μM | LOQ, μM | Determination Range, μM | RSD *, % | RSD **, % |
---|---|---|---|---|---|---|
Cysteamine | ΔF = 0.616 × c (r2 = 0.987) | 0.05 | 0.13 | 0.13–3 | 5 | 13 |
2-Mercaptoethanol | ΔF = 0.182 × c (r2 = 0.989) | 0.16 | 0.5 | 0.5–10 | 4 | 11 |
Cysteine | ΔF = 0.063 × c (r2 = 0.990) | 0.5 | 1.5 | 1.5–35 | 4 | 11 |
3-Mercaptopropionic acid | ΔF = 0.061 × c (r2 = 0.991) | 0.5 | 1.5 | 1.5–35 | 4 | 11 |
Sample | Present Method | Reference Method * | ||
---|---|---|---|---|
Found | RSD, % | Found | RSD, % | |
“Perfalgan” | (0.15 ± 0.03) mg mL–1 | 8 | (0.16 ± 0.02) mg mL–1 | 5 |
“NAC Complex” | (219 ± 40) mg per tablet | 7 | (211 ± 9) mg per tablet | 2 |
Brewer’s yeast | (44 ± 8) mg per tablet | 7 | (50 ± 7) mg per tablet | 6 |
Analyte | Method | LOD, μM | Determination Range, μM | Reference |
---|---|---|---|---|
Cysteamine | Voltammetry | 4 | 10–100 | [38] |
Spectrofluorimetry | 0.35 | 2–16 | [39] | |
Voltammetry | 0.09 | 0.3–450 | [40] | |
Spectrofluorimetry | 0.07 | 2–10 | [41] | |
UV–Vis spectrometry | 0.03 | 0.13–1.3 | [36] | |
UV–Vis spectrometry | 0.005 | 0.10–1.0 | [14] | |
Diffuse reflectance spectrometry | 0.05 | 0.13–3 | This study | |
Cysteine | HPLC-UV | — | 0.02–0.3 | [42] |
Spectrofluorimetry | 6.5 | 6.5–400 | [43] | |
UV–Vis spectrometry | 3 | 3–100 | [44] | |
Voltammetry | 0.6 | — | [45] | |
UV–Vis spectrometry | 0.4 | 0.5–4 | [46] | |
UV–Vis spectrometry | 0.05 | 0.17–2 | [36] | |
Diffuse reflectance spectrometry | 0.5 | 1.5–35 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furletov, A.; Apyari, V.; Volkov, P.; Torocheshnikova, I.; Dmitrienko, S. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. Sensors 2023, 23, 7994. https://doi.org/10.3390/s23187994
Furletov A, Apyari V, Volkov P, Torocheshnikova I, Dmitrienko S. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. Sensors. 2023; 23(18):7994. https://doi.org/10.3390/s23187994
Chicago/Turabian StyleFurletov, Aleksei, Vladimir Apyari, Pavel Volkov, Irina Torocheshnikova, and Stanislava Dmitrienko. 2023. "Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam" Sensors 23, no. 18: 7994. https://doi.org/10.3390/s23187994
APA StyleFurletov, A., Apyari, V., Volkov, P., Torocheshnikova, I., & Dmitrienko, S. (2023). Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. Sensors, 23(18), 7994. https://doi.org/10.3390/s23187994