Fault Detection in Power Distribution Networks Based on Comprehensive-YOLOv5
<p>Network Model of YOLOv5.</p> "> Figure 2
<p>FPN + PANet structure. (<b>a</b>) FPN backbone; (<b>b</b>) PANet backbone.</p> "> Figure 3
<p>GhostConv module.</p> "> Figure 4
<p>C3Ghost module.</p> "> Figure 5
<p>Schematic diagram of the BiFPN structure.</p> "> Figure 6
<p>Comparison between PANet and BiFPN structures.</p> "> Figure 7
<p>Network Model of Comprehensive-YOLOv5.</p> "> Figure 8
<p>Three Typical Defects in Distribution Grids. (<b>a</b>) Insulator Ring Absence; (<b>b</b>) Cable Detachment from Insulators; (<b>c</b>) Cable Detachment from Spacers.</p> "> Figure 8 Cont.
<p>Three Typical Defects in Distribution Grids. (<b>a</b>) Insulator Ring Absence; (<b>b</b>) Cable Detachment from Insulators; (<b>c</b>) Cable Detachment from Spacers.</p> "> Figure 9
<p>Distribution Grid Defect Detection Process Flowchart.</p> "> Figure 10
<p>Loss graph.</p> "> Figure 11
<p>Comparative Detection Results Chart. (<b>a</b>) YOLOv5 Detection Results Chart. (<b>b</b>) Comprehensive-YOLOv5 Detection Results Chart.</p> "> Figure 11 Cont.
<p>Comparative Detection Results Chart. (<b>a</b>) YOLOv5 Detection Results Chart. (<b>b</b>) Comprehensive-YOLOv5 Detection Results Chart.</p> ">
Abstract
:1. Introduction
2. Distribution Grid Fault Detection Network
2.1. Network Model of YOLOv5
2.2. GhostNet Convolutional Network
2.3. Bi-Directional Feature Pyramid Network
2.4. Focal Extended Intersection over Union Loss Function
2.5. Network Model of Comprehensive-YOLOv5
3. Experimental Setup and Analysis
3.1. Dataset Creation and Anchor Box Selection
3.1.1. Acquisition of Distribution Grid Defect Dataset
3.1.2. Data Augmentation and Preprocessing
3.1.3. Establishment of Image and Label Database
3.2. Experimental Conditions and Training Hyperparameter Settings
3.3. Evaluation Criteria
3.4. Morphological Experiment
3.5. Algorithm Comparison Experiment
3.6. Comparative Analysis of Detection Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Bi, J.; Chang, W.; Xu, Y.; Pan, X.; Ma, X.; Chang, S. Proposed Methodology for Online Frequency Response Analysis Based on Magnetic Coupling to Detect Winding Deformations in Transformers. High Volt. 2020, 5, 343–349. [Google Scholar] [CrossRef]
- Yuan, J.; Zhou, W.; Xu, X.; Liao, Y.; Zhou, C. Time-delay concept-based approach to maintenance scheduling of HV cables. High Volt. 2020, 5, 724–730. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A Review on State-of-the-Art Power Line Inspection Techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Dutta, P.; Esmaeilian, A.; Kezunovic, M. Transmission-line fault analysis using synchronized sampling. IEEE Trans. Power Deliv. 2014, 29, 942–950. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, D.; Ning, Y.; Zhang, C. Query method for optimal diagnosis of power system faults. High Volt. Eng. 2017, 43, 1311–1316. [Google Scholar]
- Guo, X.; Yin, C.; Jia, J. Fault identification method of transmission lines without shunt reactors by using sine atomic decomposition. High Volt. Eng. 2019, 45, 525–532. [Google Scholar]
- Zhao, Z.; Yang, Y.; Gao, P. Design of Transmission Line UAV Laser Obstacle Removal System Based on AI Image Recognition. Electron. Des. Eng. 2021, 29, 179–183. [Google Scholar]
- Wen, X.; Yang, Z.; Chen, C. Application Research on Intelligent Inspection of Transmission Line UAV. China Equip. Eng. 2021, 23, 31–32. [Google Scholar]
- Dai, Y.; Yao, J.; Li, Y.; Mao, F.; Wen, Z.; Cao, S. Power defect identification method based on fixed-point adaptive selection convolution neural network. High Volt. Technol. 2021, 47, 3827–3836. [Google Scholar]
- Ghashghaei, S.; Akhbari, M. Fault detection and classification of an HVDC transmission line using a heterogeneous machine learning algorithm. IET Gener. Transm. Distrib. 2021, 15, 2319–2332. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–10 December 2015; pp. 91–99. [Google Scholar]
- Wang, H.; Yang, D.; Zhou, B.; Gao, X.; Pang, Y. Fault diagnosis of multi-terminal DC transmission line based on parallel convolutional neural network. Power Syst. Autom. 2020, 44, 84–92. [Google Scholar]
- Wu, X.; Cao, W.; Wang, D. Transmission line fault diagnosis method based on multi support vector machine model. High Volt. Technol. 2020, 3, 7. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. Sensors 2020, 20, 6668. [Google Scholar] [CrossRef]
- Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sens. 2021, 13, 1619. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589. [Google Scholar]
- Tan, L.; Chen, Y.; Pang, J. BiFPN: Towards Efficient and Effective Bi-directional Feature Pyramid Network for Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 13698–13707. [Google Scholar]
- Tan, L.; Chen, Y.; Zhu, Y. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar] [CrossRef]
- Wu, Y.; He, K.; Li, F. Bag of Freebies for Training Object Detection Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5139–5147. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, Z.; Li, D. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions. arXiv 2021, arXiv:2102.12122. Available online: https://arxiv.org/abs/2102.12122 (accessed on 13 June 2023).
- Xie, S.; Zhang, R.; Zhu, S. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qi, H.; Dai, J.; Ji, X.; Wei, Y. Fully Convolutional Instance-aware Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2359–2367. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox: An Advanced Object Detection Network. In Proceedings of the 24th ACM international conference on Multimedia (MM’16), Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar] [CrossRef] [Green Version]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over union: A metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wan, J.; Pan, Z.; Zhang, J.; Ma, R. Defect Identification of Distribution Components Based on Improved Yolov5-Lite Light-weight. High Volt. Eng. 2023, 3, 1–10. [Google Scholar] [CrossRef]
CPU | GPU | RAM | System Environment |
---|---|---|---|
E5 2690v4 ×2 14C 28T 35 MB Cache | RTX 2080 ×2 | 64GB DDR4 ECC | Ubuntu 20.04 Focal Pytorch1.11 Cuda11.3 + Cudnn8.7.0 Python 3.9.0 |
Hyperparameter | Input Image Size | Epochs | Batch-Size | Learning-Rate | Momentum | Weight Decay Coefficient | Input Channels |
---|---|---|---|---|---|---|---|
Parameter Setting | 416 × 416 | 300 | 64 | 0.0001 | 0.937 | 0.0005 | 3 |
GhostNet | BiFPN | Focal-EIoU | [email protected]/% | [email protected]/% | Without Loop | Detachment Insulator | Detachment Spacer | FPS | Inference Speed | Model Weight Size/MB | Parameters | GFLOPs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
× | × | × | 88.3 | 45.2 | 89.4 | 85.2 | 90.3 | 20 | 5.1 | 15.5 | 7,059,201 | 15.9 |
√ | × | × | 87.2 | 44.8 | 88.3 | 82.2 | 91.1 | 53 | 1.9 | 3.8 | 2,506,403 | 5.2 |
√ | √ | × | 89.9 | 46.1 | 91.8 | 86 | 91.9 | 50 | 2.0 | 4.0 | 3,601,412 | 6.3 |
√ | √ | √ | 90.1 | 46.9 | 91.4 | 87.1 | 91.8 | 52 | 2.1 | 4.1 | 3,803,507 | 6.7 |
Algorithm | [email protected]/% | [email protected]/% | Without Loop | Detachment Insulator | Detachment Spacer | FPS | Inference Speed | Model Weight Size/MB | Parameters | GFLOPs |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv4 | 83.2 | 43.1 | 81.4 | 84.3 | 83.9 | 16 | 6.25 | 41 | 21,064,307 | 43.2 |
YOLOv5 | 88.3 | 45.2 | 89.4 | 85.2 | 90.3 | 20 | 5.1 | 15.5 | 7,059,201 | 15.9 |
DETR | 89.1 | 46.1 | 90.1 | 86.6 | 90.6 | 8 | 12.5 | 159 | 64,096,782 | 125.1 |
Faster RCNN | 75.1 | 40.5 | 76.5 | 70.9 | 77.9 | 4 | 25 | 86 | 8,942,302 | 88.1 |
YOLOv5-Lite | 68.1 | 37.2 | 70.2 | 62.8 | 71.3 | 40 | 2.5 | 2.8 | 1,536,480 | 3.6 |
Cpmprehensive-YOLOv5 | 90.1 | 46.9 | 91.4 | 87.1 | 91.8 | 50 | 2.0 | 4.1 | 3,803,507 | 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Zhou, X.; Zhou, D.; Yang, Z.; Liang, H.; Su, H. Fault Detection in Power Distribution Networks Based on Comprehensive-YOLOv5. Sensors 2023, 23, 6410. https://doi.org/10.3390/s23146410
Niu S, Zhou X, Zhou D, Yang Z, Liang H, Su H. Fault Detection in Power Distribution Networks Based on Comprehensive-YOLOv5. Sensors. 2023; 23(14):6410. https://doi.org/10.3390/s23146410
Chicago/Turabian StyleNiu, Shengsuo, Xiaosen Zhou, Dasen Zhou, Zhiyao Yang, Haiping Liang, and Haifeng Su. 2023. "Fault Detection in Power Distribution Networks Based on Comprehensive-YOLOv5" Sensors 23, no. 14: 6410. https://doi.org/10.3390/s23146410
APA StyleNiu, S., Zhou, X., Zhou, D., Yang, Z., Liang, H., & Su, H. (2023). Fault Detection in Power Distribution Networks Based on Comprehensive-YOLOv5. Sensors, 23(14), 6410. https://doi.org/10.3390/s23146410