Adaptive DBSCAN Clustering and GASA Optimization for Underdetermined Mixing Matrix Estimation in Fault Diagnosis of Reciprocating Compressors
<p>Mixed-signal scatter plot: (<b>a</b>) in the time domain; (<b>b</b>) in the time–frequency domain.</p> "> Figure 2
<p>Time–frequency scatter plot: (<b>a</b>) After the elimination of low energy points. (<b>b</b>) After the detection of single-source points.</p> "> Figure 3
<p>Clustering effect: (<b>a</b>) clustering by DBSCAN; (<b>b</b>) clustering by adaptive DBSCAN.</p> "> Figure 4
<p>Process of adaptive DBSCAN clustering.</p> "> Figure 5
<p>Tree coding structure.</p> "> Figure 6
<p>Two leaf nodes of a tree mutually exchanged: (<b>a</b>) same tree exchange; (<b>b</b>) different tree exchange.</p> "> Figure 7
<p>Weight coefficient decision diagram. (<b>a</b>) the trend graph of the fitness function as the power exponent increases; (<b>b</b>) the trend graph of computation time with an increasing power exponent.</p> "> Figure 8
<p>The flowchart of the CYYM method.</p> "> Figure 9
<p>Waveforms of source signals: (<b>a</b>) in the time domain. (<b>b</b>) in the frequency domain.</p> "> Figure 10
<p>Mixed signals: (<b>a</b>) time domain waveforms; (<b>b</b>) envelope spectra.</p> "> Figure 11
<p>(<b>a</b>) Normalized time–frequency scatterplots. (<b>b</b>) Clusted by GASA. (<b>c</b>) Clusted by improved DBSCAN. (<b>d</b>) Clusted by CYYM.</p> "> Figure 12
<p>Time− domain signal comparison diagram: (<b>a</b>) source signals; (<b>b</b>) recovery Signal.</p> "> Figure 13
<p>Frequency domain signal comparison diagram: (<b>a</b>) source signals; (<b>b</b>) recovery signal.</p> "> Figure 14
<p>Source signals: (<b>a</b>) Waveforms. (<b>b</b>) Fourier spectrums.</p> "> Figure 15
<p>Mixed signals: (<b>a</b>) waveforms; (<b>b</b>) Fourier spectra.</p> "> Figure 16
<p>Time-domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>1</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>1</mn> </msub> </semantics></math> obtained by TIFROM method.</p> "> Figure 17
<p>Time-domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>2</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>2</mn> </msub> </semantics></math> obtained by TIFROM method.</p> "> Figure 18
<p>Time-domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>3</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>3</mn> </msub> </semantics></math> obtained by TIFROM method.</p> "> Figure 19
<p>Time -domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>4</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>4</mn> </msub> </semantics></math> obtained by TIFROM method.</p> "> Figure 20
<p>Time-domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>1</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>1</mn> </msub> </semantics></math> obtained by DEMIX method.</p> "> Figure 21
<p>Time -domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>2</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>2</mn> </msub> </semantics></math> obtained by DEMIX method.</p> "> Figure 22
<p>Time-domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>3</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>3</mn> </msub> </semantics></math> obtained by DEMIX method.</p> "> Figure 23
<p>Time-domain signal: (<b>a</b>) Source signal <math display="inline"><semantics> <msub> <mi>s</mi> <mn>4</mn> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>s</mi> <mn>4</mn> </msub> </semantics></math> obtained by DEMIX method.</p> "> Figure 24
<p>Number of clusters performance map.</p> "> Figure 25
<p>Time-domain signal: (<b>a</b>) Source signals. (<b>b</b>) Estimated signals obtained by CYYM method.</p> "> Figure 26
<p>DW-10/12-27-Xlll type two-stage double-acting reciprocating compressor.</p> "> Figure 27
<p>The driving schematic of the compressor mechanism.</p> "> Figure 28
<p>Composition of the reciprocating compressor connecting rod: (<b>a</b>) connecting rod; (<b>b</b>) big head of the connecting rod; (<b>c</b>) bearing bush; (<b>d</b>) failure bearing bush.</p> "> Figure 29
<p>Mixed signals: (<b>a</b>) time−domain waveforms; (<b>b</b>) envelope spectra.</p> "> Figure 30
<p>Time-domain contrast diagram of compressor signals: (<b>a</b>) source signals; (<b>b</b>) recovery signals by the CYYM method.</p> "> Figure 31
<p>Frequency domain contrast diagram of compressor signals: (<b>a</b>) source signals; (<b>b</b>) recovery signals by the CYYM method.</p> "> Figure 32
<p>Comparison diagram of correlation coefficients.</p> "> Figure 33
<p>Comparison diagram of NMSE.</p> "> Figure 34
<p>Comparison diagram of SIR.</p> "> Figure 35
<p>RCMFE characterization curve vs. fault library identification plot: (<b>a</b>) normal state; (<b>b</b>) big end failure; (<b>c</b>) small end failure.</p> ">
Abstract
:1. Introduction
- The adaptive DBSCAN method effectively filters noise and accurately identifies source numbers, facilitating precise matrix estimation.
- The integration of the GASA optimization algorithm combines global exploration capabilities with local search, avoiding local optima and improving clustering center identification.
- The optimized GASA algorithm provides sensible control parameter settings, enhancing search capabilities and evolution speed.
- Leveraging the k-dist curve improves denoising and clustering, which are adaptively integrated into the adaptive DBSCAN algorithm.
2. Basic Theory of Blind Source Separation
2.1. The Mathematical Model
2.2. Single-Source Point Detection
3. Adaptive DBSCAN Clustering and GASA Optimization
3.1. Adaptive DBSCAN Clustering
3.1.1. DBSCAN
3.1.2. ADBSCAN
Algorithm 1 Adaptive DBSCAN Clustering |
Input: Noise Threshold, Initial k 1. k_dist_sequence [xi] = calculate_k_dist(xi, k) 2. sorted_k_dist = sort(k_dist_sequence) Eps = max(sorted_k_dist) 3. inflection_point = find_inflection_point(sorted_k_dist) optimal_radius = sorted_k_dist[inflection_point] 4. clusters = DBSCAN(data, Eps = optimal_radius, MinPts = k) num_noise_points = count_noise_points(clusters) 5.If num_noise_points ≤ noise_threshold: end_calculation else: k = k + 1 return step 1 |
3.2. Genetic Simulated Annealing Optimization
3.2.1. Encoding Method
3.2.2. Fitness Function
3.2.3. Select Operation
3.2.4. Crossover Operator
3.2.5. Mutation Operation
3.2.6. Individuals’ Simulated Annealing Operation
3.2.7. Conditions of Termination
3.3. CYYM Algorithm Steps and Processes
Algorithm 2 CYYM Algorithm |
1.def signal_preprocessing(data): data = perform_STFT_conversion(data) data = perform_single_source_detection(data) data = remove_low_energy_points(data) data = normalize_spatial_mapping(data) return data 2.def draw_k_dist_curve(data): k_dist_curve = calculate_k_dist_curve(data) inflection_point = locate_inflection_point(k_dist_curve) dbscan_params = derive_dbscan_parameters(inflection_point) return dbscan_params 3.def dbscan_clustering(data, dbscan_params): clusters = run_dbscan(data, dbscan_params) return clusters 4.Initialize Parameters for SA pop_size = 10 max_generations = 10 crossover_prob = 0.7 mutation_prob = 0.01 initial_temperature = 100 cooling_coefficient = 0.8 termination_temperature =1 5.Initialize SA Algorithm cluster_centers = get_cluster_centers(clusters) population = initialize_population(pop_size, cluster_centers) compute_membership_and_fitness(population, data) 6.Initialize Loop Count generation = 0 7.Genetic Operations while generation < max_generations: selected_population = select_population(population) offspring = crossover_and_mutation(selected_population crossover_prob, mutation_prob) new_population = form_new_population(population, offspring) compute_membership_and_fitness(new_population, data) 8.Update Generation generation += 1 9.SimulatedAnnealing update_with_simulated_annealing(new_population, population, temperature) 10.Check Termination If temperature < termination_temperature: return global_optimal_solution else repeat Genetic Operations 11. mixing_matrix = estimate_mixing_matrix(cluster_centers) 12. recovered_signals = recover_source_signals(data, mixing_matrix) |
4. The Simulation Analysis and Compression Application
4.1. Evaluation of Indicators
4.2. Experiment 1: Comparative Analysis of Accuracy in Mixed Matrix Estimation
4.3. Simulation Experiment 2: Comparative Evaluation of Signal Recovery
4.4. Experiment 3: Compression Machine Trials and Comparative Analysis of Anti-Noise Performance
4.5. Comparative Performance Analysis: NMSE, Correlation Coefficient, and SIR under Varying Signal-to-Noise Ratios
4.6. Compressor Fault Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Wang, J.; Lee, J.; Li, Y. A compound interpolation envelope local mean decomposition and its application for fault diagnosis of reciprocating compressors. Mech. Syst. Signal Process. 2018, 110, 273–295. [Google Scholar]
- Li, S.; Sun, Y.; Gao, H.; Zhang, X. An Interpretable Aerodynamic Identification Model for Hypersonic Wind Tunnels. IEEE Trans. Ind. Informat. 2023, 32, 54–64. [Google Scholar] [CrossRef]
- Mirco, P.; Julio, J.C.; Maximo, C. Ray-Space-Based Multichannel Nonnegative Matrix Factorization for Audio Source Separation. IEEE Signal Process. Lett. 2021, 28, 369–373. [Google Scholar]
- Chen, L.; Mei, L.; Wang, J. Speech enhancement for in-vehicle voice control systems using wavelet analysis and blind source separation. IET Intell. Transp. Syst. 2019, 13, 693–702. [Google Scholar]
- Holobar, A.; Farina, D. Noninvasive neural interfacing with wearable muscle sensors: Combining convolutive blind source separation methods and deep learning techniques for neural decoding. IEEE Signal Process. Mag. 2021, 38, 103–118. [Google Scholar] [CrossRef]
- Bobin, J.; Starck, J.L.; Fadili, J. Sparsity and morphological diversity in blind source separation. IEEE Trans. Image Process. 2007, 16, 2662–2674. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, O.; Rickard, S. Blind Separation of Speech Mixtures via Time-Frequency Masking. IEEE Trans. Signal Process. 2004, 52, 1830–1847. [Google Scholar] [CrossRef]
- Abrard, F.; Deville, Y. A Time–Frequency Blind Signal Separation Method Applicable to Underdetermined Mixtures of Dependent Sources. Signal Process. 2005, 85, 1389–1403. [Google Scholar] [CrossRef]
- Deville, Y.; Puigt, M. Temporal and Time-Frequency Correlation-Based Blind Source Separation Methods. Part I: Determined and Underdetermined Linear Instantaneous Mixtures. Signal Process. 2007, 87, 374–407. [Google Scholar] [CrossRef]
- Arberet, S.; Gribonval, R.; Bimbot, F. A Robust Method to Count and Locate Audio Sources in a Multichannel Underdetermined Mixture. IEEE Trans. Signal Process. 2009, 58, 121–133. [Google Scholar] [CrossRef]
- Aissa-El-Bey, A.; Linh-Trung, N.; Abed-Meraim, K.; Belouchrani, A.; Grenier, Y. Underdetermined Blind Separation of Nondisjoint Sources in the Time-Frequency Domain. IEEE Trans. Signal Process. 2007, 55, 897–907. [Google Scholar] [CrossRef]
- Naini, F.M.; Mohimani, G.H.; Babaie-Zadeh, M.; Jutten, C. Estimating the Mixing Matrix in Sparse Component Analysis (SCA) Based on Partial k-Dimensional Subspace Clustering. Neurocomputing 2008, 71, 2330–2343. [Google Scholar] [CrossRef]
- Reju, V.G.; Koh, S.N.; Soon, Y. An Algorithm for Mixing Matrix Estimation in Instantaneous Blind Source Separation. Signal Process. 2009, 89, 1762–1773. [Google Scholar] [CrossRef]
- Reju, V.G.; Koh, S.N.; Soon, Y. Underdetermined Convolutive Blind Source Separation via Time–Frequency Masking. IEEE Trans. Audio Speech Lang. Process. 2009, 18, 101–116. [Google Scholar] [CrossRef]
- Van Vaerenbergh, S.; Santamaría, I. A Spectral Clustering Approach to Underdetermined Postnonlinear Blind Source Separation of Sparse Sources. IEEE Trans. Neural Netw. 2006, 17, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Deville, Y.; Hosseini, S. Blind Identification and Separation Methods for Linear-Quadratic Mixtures and/or Linearly Independent Non-Stationary Signals. In Proceedings of the 2007 9th International Symposium on Signal Processing and Its Applications, Sharjah, United Arab Emirates, 12–15 February 2007; pp. 1–4. [Google Scholar]
- Puigt, M.; Griffin, A.; Mouchtaris, A. Nonlinear Blind Mixture Identification Using Local Source Sparsity and Functional Data Clustering. In Proceedings of the 2012 IEEE 7th Sensor Array Multichannel Signal Process. Workshop (SAM), Hoboken, NJ, USA, 17–20 June 2012; pp. 481–484. [Google Scholar]
- Pavlidi, D.; Griffin, A.; Puigt, M.; Mouchtaris, A. Real-time Multiple Sound Source Localization and Counting Using a Circular Microphone Array. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 2193–2206. [Google Scholar] [CrossRef]
- Karoui, M.S.; Deville, Y.; Hosseini, S.; Ouamri, A. Blind Spatial Unmixing of Multispectral Images: New Methods Combining Sparse Component Analysis, Clustering, and Non-negativity Constraints. Pattern Recognit. 2012, 45, 4263–4278. [Google Scholar] [CrossRef]
- Fu, X.; Ma, W.K.; Huang, K.; Sidiropoulos, N.D. Blind Separation of Quasi-Stationary Sources: Exploiting Convex Geometry in Covariance Domain. IEEE Trans. Signal Process. 2015, 63, 2306–2320. [Google Scholar] [CrossRef]
- Abbas, K.; Puigt, M.; Delmaire, G.; Roussel, G. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [Google Scholar]
- Yao, J.; Xiang, Y.; Qian, S. Noise source identification of diesel engine based on variational mode decomposition and robust independent component analysis. Appl. Acoust. 2017, 116, 184–194. [Google Scholar] [CrossRef]
- Hu, C.; Yang, Q.; Huang, M. Sparse component analysis-based under-determined blind source separation for bearing fault feature extraction in wind turbine gearbox. J. IET Renew. Power Gener. 2017, 11, 330–337. [Google Scholar] [CrossRef]
- Hao, Y.; Song, L.; Ke, Y. Diagnosis of Compound Fault Using Sparsity Promoted-Based Sparse Component Analysis. Sensors 2017, 17, 1307. [Google Scholar] [CrossRef]
- He, C.; Li, H.; Zhao, X. Weak characteristic determination for blade crack of centrifugal compressors based on underdetermined blind source separation. Measurement 2018, 128, 545–557. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Zhao, H. Fault Feature Extraction for Reciprocating Compressors Based on Underdetermined Blind Source Separation. Entropy 2021, 23, 1217. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cichocki, A.; Amari, S. Analysis of sparse representation and blind source separation. J. Neural Comput. 2004, 6, 1193–1234. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Amari, S.; Cichocki, A.; Ho, D.W.; Xie, S. Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process. 2006, 54, 423–437. [Google Scholar]
- Bofill, P.; Zibulevsky, M. Underdetermined blind source separation using sparse representations. Signal Process. 2001, 81, 2353–2362. [Google Scholar] [CrossRef]
- Liang, L.; Peng, D.; Zhang, H.; Sang, Y.; Zhang, L. Underdetermined mixing matrix estimation by exploiting sparsity of sources. Measurement 2020, 152, 107268. [Google Scholar]
- Lu, J.; Wei, C.; Zi, Y. A Novel Underdetermined Blind Source Separation Method and Its Application to Source Contribution Quantitative Estimation. Sensors 2019, 19, 1413. [Google Scholar] [CrossRef]
- Jun, H.; Chen, Y.; Zhang, Q. Blind Source Separation Method for Bearing Vibration Signals. IEEE Access 2018, 6, 658–664. [Google Scholar] [CrossRef]
- Askari, S. Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development. Expert Syst. Appl. 2021, 165, 38–56. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Wen, J. Novel mixing matrix estimation approach in underdetermined blind source separation. Neurocomputing 2016, 173, 623–632. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Maulik, U.; Bandyopadhyay, S. Survey of Multiobjective Evolutionary Algorithms for Data Mining. IEEE Trans. Evol. Comput. 2015, 18, 20–35. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Wu, X. Application of simulated annealing genetic algorithm optimized back propagation (BP) neural network in fault diagnosis. Model. Simul. Sci. Comput. 2019, 10, 46–49. [Google Scholar] [CrossRef]
- Sayin, A.; Hoare, E.G.; Antoniou, M. Design and verification of reduced redundancy ultrasonic MIMO arrays using simulated annealing & genetic algorithms. IEEE Sens. 2020, 99, 46–49. [Google Scholar]
- Sun, L.; Chen, G.; Xiong, H.; Guo, C. Cluster analysis in data-driven management and decisions. J. Manag. Sci. Eng. 2017, 2, 227–251. [Google Scholar] [CrossRef]
- Fu, J. Research on Intrusion Detection Technology Based on Improved Fuzzy C-Means Clustering Algorithm D; Lanzhou University: Lanzhou, China, 2018; pp. 1–39. [Google Scholar]
- Liu, Q.; Wang, Z.; Liu, S. A Optimization Clustering Algorithm Based on Simulated Annealing and Genetic Algorithm. CA 2006, 22, 270–272. [Google Scholar]
- Jin, H.; Luo, W.; Li, H.; Dai, L. Underdetermined blind source separation of radar signals based on genetic annealing algorithm. J. Eng. 2021, 3, 261–273. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, W.; He, D. A novel underdetermined blind source separation method with noise and unknown source number. J. Sound Vib. 2019, 457, 67–91. [Google Scholar] [CrossRef]
- Birant, D.; Kut, A. St-dbscan: An algorithm for clustering spatial-temporal data. Data Knowl. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Mahesh Kumar, K.; Rama Mohan Reddy, A. A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method. Pattern Recognit. 2016, 58, 39–48. [Google Scholar] [CrossRef]
- Lai, W.; Zhou, M.; Hu, F.; Bian, K.; Song, Q. A New DBSCAN Parameters Determination Method Based on Improved MVO. IEEE Access. 2019, 7, 104085–104095. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, J.H.; Yoo, K.H. AA-DBSCAN: An Approximate Adaptive DBSCAN for Finding Clusters with Varying Densities. J. Supercomput. 2019, 75, 142–169. [Google Scholar] [CrossRef]
- Jiang, H.; Li, J.; Yi, S.; Wang, X.; Hu, X. A New Hybrid Method Based on Partitioning-based DBSCAN and Ant Clustering. Expert Syst. Appl. 2011, 38, 9373–9381. [Google Scholar] [CrossRef]
- Viswanath, P.; Suresh Babu, V. Rough-DBSCAN: A Fast Hybrid Density-Based Clustering Method for Large Data Sets. Pattern Recogn. Lett. 2009, 30, 1477–1488. [Google Scholar] [CrossRef]
- Shen, J.; Hao, X.; Liang, Z.; Liu, Y.; Wang, W.; Shao, L. Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Trans. Image Process. 2016, 25, 5933–5942. [Google Scholar] [CrossRef] [PubMed]
- Francis, Z.; Villagrasa, C.; Clairand, I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput. Methods Programs Biomed. 2011, 101, 265–270. [Google Scholar] [CrossRef]
- Tran, T.N.; Drab, K.; Daszykowski, M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemometr. Intell. Lab. Syst. 2013, 120, 92–96. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Gao, H.; Zhang, X. Transfer Learning: A New Load Identification Network Based on Adaptive EMD and Soft Thresholding in Hypersonic Wind Tunnel. Chin. J. Aeronaut. 2023, 24, 1–15. [Google Scholar]
Method | Angular Difference | NMSE (dB) | ||
---|---|---|---|---|
Kmeans | 0.4100 | 1.1868 | 0.3226 | −38.4100 |
FCM | 0.2639 | 0.3040 | 0.2246 | −46.4680 |
GASA | 0.3170 | 0.1234 | 0.1347 | −48.5710 |
DBSCAN | 0.1039 | 0.1661 | 0.1659 | −51.7364 |
ADBSCAN | 0.0093 | 0.1074 | 0.0093 | −59.1250 |
CYYM | 0.0001 | 0.0016 | 0.0032 | −74.1040 |
Method | GASA | The Proposed Method |
---|---|---|
Running time | 14.96 s | 4.539 s |
Method | Angular Difference | NMSE (dB) | |||
---|---|---|---|---|---|
TIFROM | 18.5564 | 18.3191 | 0.0587 | 0.0167 | −7.9891 |
DEMIX | 0.0023 | 4.3438 | 0.0041 | 0.0021 | −36.1021 |
DBSCAN | 0.5555 | 0.8192 | 0.4062 | 1.0298 | −33.9479 |
CYYM | 0.0530 | 0.0043 | 0.0228 | 0.5943 | −44.1980 |
Shaft Power | Piston Stroke | Crankshaft Speed |
---|---|---|
500 kW | 240 mm | 496 rpm |
Methods | Correlation Coefficient R | NMSE (dB) | ||
---|---|---|---|---|
Kmeans | 0.8519 | 0.9770 | 0.8881 | −23.8561 |
DBSCAN | 0.8560 | 0.9766 | 0.8879 | −26.4720 |
ADBSCAN | 0.8540 | 0.9768 | 0.8878 | −28.2293 |
FCM | 0.8544 | 0.9769 | 0.8878 | −28.7745 |
GASA | 0.8758 | 0.9698 | 0.8207 | −30.5559 |
CYYM | 0.8809 | 0.9706 | 0.8976 | −38.9623 |
Method | GASA | Proposed Method |
---|---|---|
Running time | 28.8614 s | 8.3911 s |
SNR | 10 db | 15 db | 20 db | 25 db | 30 db |
---|---|---|---|---|---|
SIR | 11.4748 | 12.9818 | 13.6118 | 13.9570 | 14.0181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Zhao, H.; Wang, C.; Shao, Q. Adaptive DBSCAN Clustering and GASA Optimization for Underdetermined Mixing Matrix Estimation in Fault Diagnosis of Reciprocating Compressors. Sensors 2024, 24, 167. https://doi.org/10.3390/s24010167
Li Y, Wang J, Zhao H, Wang C, Shao Q. Adaptive DBSCAN Clustering and GASA Optimization for Underdetermined Mixing Matrix Estimation in Fault Diagnosis of Reciprocating Compressors. Sensors. 2024; 24(1):167. https://doi.org/10.3390/s24010167
Chicago/Turabian StyleLi, Yanyang, Jindong Wang, Haiyang Zhao, Chang Wang, and Qi Shao. 2024. "Adaptive DBSCAN Clustering and GASA Optimization for Underdetermined Mixing Matrix Estimation in Fault Diagnosis of Reciprocating Compressors" Sensors 24, no. 1: 167. https://doi.org/10.3390/s24010167
APA StyleLi, Y., Wang, J., Zhao, H., Wang, C., & Shao, Q. (2024). Adaptive DBSCAN Clustering and GASA Optimization for Underdetermined Mixing Matrix Estimation in Fault Diagnosis of Reciprocating Compressors. Sensors, 24(1), 167. https://doi.org/10.3390/s24010167