An Analysis of Semicircular Channel Backscattering Interferometry through Ray Tracing Simulations
"> Figure 1
<p>(<b>A</b>): A diagram showing the ray path taken when light is incident perpendicular to a chip with a semicircular channel with intersection number <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>B</b>): The path of a ray when the incident light is oblique to the chip surface with intersection number <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Positive <span class="html-italic">x</span> is defined to be to the right.</p> "> Figure 2
<p>A diagram showing examples of a type <span class="html-italic">a</span>, <span class="html-italic">b</span>, and <span class="html-italic">c</span> ray, highlighting the segments of the <span class="html-italic">c</span> ray that correspond to the path lengths sections <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0</mn> <mo>−</mo> <mn>5</mn> </mrow> </msub> </semantics></math> as described in the text.</p> "> Figure 3
<p>Graphs showing the relative amplitudes (where <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>) of type <span class="html-italic">c</span> rays for both <span class="html-italic">s</span>- and <span class="html-italic">p</span>-polarised incident light at normal incidence (<math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, (<b>A</b>)) and oblique incidence (<math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <msup> <mn>3</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, (<b>B</b>)). The data here are taken using the standard parameters as defined in the main text. Values of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>/</mo> <mi>r</mi> </mrow> </semantics></math> between <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>1.5</mn> </mrow> </semantics></math> are simulated to sample the full range of values that give rise to type <span class="html-italic">c</span> rays. The dashed lines in A represent the bounds on a given intersection number, with the central section denoting <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and increasing by 1 upon crossing a line moving outwards. The sudden reduction in amplitude at the edges is due to the rays no longer entering the channel at this angle. The amplitudes of type <span class="html-italic">a</span> and <span class="html-italic">b</span> rays for <span class="html-italic">p</span>-polarised light are omitted due to their similarity with their <span class="html-italic">s</span>-polarised counterparts.</p> "> Figure 4
<p>A graph showing the optical path length difference of a type <span class="html-italic">c</span> ray for both normal and oblique incidence (<math display="inline"><semantics> <msup> <mn>0</mn> <mo>∘</mo> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>3</mn> <mo>∘</mo> </msup> </semantics></math>, respectively). The difference is defined to be with respect to a ray of <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (i.e., solving Equation (<a href="#FD18-sensors-22-04301" class="html-disp-formula">18</a>) and subtracting <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>n</mi> <mn>2</mn> </msub> <mi>r</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>n</mi> <mn>1</mn> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mi>d</mi> </mrow> </semantics></math>). Data were simulated using the parameters as set out in the main text.</p> "> Figure 5
<p>Graphs showing the interference patterns seen on a detector using the parameters as set out in the main body of text at a distance of <math display="inline"><semantics> <mrow> <mn>1</mn> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> with the angle given from the line of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. (<b>A</b>) shows the interference pattern for <span class="html-italic">s</span>-polarised incident light, whereas (<b>B</b>) shows the pattern imaged for <span class="html-italic">p</span>-polarised light.</p> "> Figure 6
<p>A graph showing the dechirped Fourier transform of the interference pattern seen at normal incidence. A single sharp peak in the Fourier domain is seen here for both <span class="html-italic">s</span>- (<b>A</b>) and <span class="html-italic">p</span>-polarised (<b>B</b>) incident light. A graph showing how the phase of each peak in (<b>A</b>,<b>B</b>) changes as a function of refractive index <math display="inline"><semantics> <msub> <mi>n</mi> <mn>2</mn> </msub> </semantics></math> is shown in (<b>C</b>). All data were taken using the parameters set out in the main text.</p> "> Figure 7
<p>A graph showing the dechirped Fourier transform of the interference pattern seen at an incident angle of <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>3</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>. A sharp peak in the Fourier domain as seen in <a href="#sensors-22-04301-f006" class="html-fig">Figure 6</a> is also seen here for both <span class="html-italic">s</span>- (<b>A</b>) and <span class="html-italic">p</span>-polarised (<b>B</b>) incident light. A graph showing how the phase of each peak in (<b>A</b>,<b>B</b>) changes as a function of refractive index <math display="inline"><semantics> <msub> <mi>n</mi> <mn>2</mn> </msub> </semantics></math> is shown in (<b>C</b>). All data were taken using the other parameters set out in the main text.</p> ">
Abstract
:1. Introduction
2. Ray Tracing Simulations
2.1. Angular Bounds
2.2. Path Lengths
2.3. Intensity Calculations
3. Validation of Model
4. Interference Patterns
4.1. Normal Incidence
4.2. Oblique Incidence
5. Comparison to Literature
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kussrow, A.; Enders, C.S.; Bornhop, D.J. Interferometric methods for label-free molecular interaction studies. Anal. Chem. 2012, 84, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Bornhop, D.J.; Latham, J.C.; Kussrow, A.; Markov, D.A.; Jones, R.D.; Sørensen, H.S. Free-solution, label-free molecular interactions studied by back-scattering interferometry. Science 2007, 317, 1732–1736. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, S.T.; Jørgensen, T.M.; Sørensen, H.S.; Kristensen, S.R. Real-time interferometric refractive index change measurement for the direct detection of enzymatic reactions and the determination of enzyme kinetics. Sensors 2019, 19, 539. [Google Scholar] [CrossRef] [Green Version]
- Kenmore, C.K.; Erskine, S.R.; Bornhop, D.J. Refractive-index detection by interferometric backscatter in packed capillary high-performance liquid chromatography. J. Chromatogr. A 1997, 762, 219–225. [Google Scholar] [CrossRef]
- Dunn, R.C. Wavelength Modulated Back-Scatter Interferometry for Universal, On-Column Refractive Index Detection in Picoliter Volumes. Anal. Chem. 2018, 90, 6789–6795. [Google Scholar] [CrossRef] [PubMed]
- Swinney, K.; Bornhop, D.J. A chip-scale universal detector for electrophoresis based on backscattering interferometry. Analyst 2000, 125, 1713–1717. [Google Scholar] [CrossRef] [PubMed]
- Bornhop, D.J.; Hankins, J. Polarimetry in capillary dimensions. Anal. Chem. 1996, 68, 1677–1684. [Google Scholar] [CrossRef]
- Mulkerns, N.M.C.; Hoffmann, W.H.; Ramos-Soriano, J.; de la Cruz, N.; Millan, T.G.; Harniman, R.L.; Lindsay, I.; Seddon, A.; Galan, M.C.; Gersen, H. Measuring the Refractive Index and Sub-Nanometre Surface Functionalisation of Nanoparticles in Suspension. Nanoscale 2022. [Google Scholar] [CrossRef]
- Bornhop, D.J.; Dovichi, N.J. Simple Nanoliter Refractive Index Detector. Anal. Chem. 1986, 58, 504–505. [Google Scholar] [CrossRef]
- Kammer, M.N.; Kussrow, A.K.; Olmsted, I.R.; Bornhop, D.J. A Highly Compensated Interferometer for Biochemical Analysis. ACS Sens. 2018, 3, 1546–1552. [Google Scholar] [CrossRef]
- Markov, D.A.; Swinney, K.; Bornhop, D.J. Label-free molecular interaction determinations with nanoscale interferometry. J. Am. Chem. Soc. 2004, 126, 16659–16664. [Google Scholar] [CrossRef]
- Swinney, K.; Markov, D.; Bornhop, D.J. Ultrasmall volume refractive index detection using microinterferometry. Rev. Sci. Instrum. 2000, 71, 2684–2692. [Google Scholar] [CrossRef]
- Kammer, M.N.; Kussrow, A.; Gandhi, I.; Drabek, R.; Batchelor, R.H.; Jackson, G.W.; Bornhop, D.J. Quantification of opioids in urine using an aptamer-based free-solution assay. Anal. Chem. 2019, 91, 10582–10588. [Google Scholar] [CrossRef] [PubMed]
- Tarigan, H.J.; Neill, P.; Kenmore, C.K.; Bornhop, D.J. Capillary-scale refractive index detection by interferometric backscatter. Anal. Chem. 1996, 68, 1762–1770. [Google Scholar] [CrossRef]
- You, Z.; Jiang, D.; Stamnes, J.; Chen, J.; Xiao, J. Characteristics and applications of two-dimensional light scattering by cylindrical tubes based on ray tracing. Appl. Opt. 2012, 51, 8341–8349. [Google Scholar] [CrossRef]
- Xu, Q.; Tian, W.; You, Z.; Xiao, J. Multiple beam interference model for measuring parameters of a capillary. Appl. Opt. 2015, 54, 6948. [Google Scholar] [CrossRef]
- Jørgensen, T.M.; Jepsen, S.T.; Sørensen, H.S.; Di Gennaro, A.K.; Kristensen, S.R. Back scattering interferometry revisited—A theoretical and experimental investigation. Sens. Actuators B Chem. 2015, 220, 1328–1337. [Google Scholar] [CrossRef]
- Swinney, K.; Markov, D.; Bornhop, D.J. Chip-scale universal detection based on backscatter interferometry. Anal. Chem. 2000, 72, 2690–2695. [Google Scholar] [CrossRef]
- Mulkerns, N.M.C.; Hoffmann, W.H.; Lindsay, I.D.; Gersen, H. Shedding Light on Capillary-Based Backscattering Interferometry. Sensors 2022, 22, 2157. [Google Scholar] [CrossRef]
- Faust, B.; Klynning, L. Low-cost wavemeter with a solid Fizeau interferometer and fiber-optic input. Appl. Opt. 1991, 30, 5254. [Google Scholar] [CrossRef]
- Takano, Y.; Tanaka, M. Phase matrix and cross sections for single scattering by circular cylinders: A comparison of ray optics and wave theory. Appl. Opt. 1980, 19, 2781. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, S.T.; Jørgensen, T.M.; Zong, W.; Trydal, T.; Kristensen, S.R.; Sørensen, H.S. Evaluation of back scatter interferometry, a method for detecting protein binding in solution. Analyst 2015, 140, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Köhler, W.; Müller, B. A Scanning Michelson Interferometer for the Measurement of the Concentration and Temperature Derivative of the Refractive Index of Liquids. Berichte Bunsenges. Phys. Chem. 1995, 99, 600–608. [Google Scholar] [CrossRef]
- Dunn, R.C. Compact, inexpensive refractive index detection in femtoliter volumes using commercial optical pickup technology. Anal. Methods 2019, 11, 2303–2310. [Google Scholar] [CrossRef]
Intersection Number, i | Bounds on Incident Ray |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulkerns, N.M.C.; Hoffmann, W.H.; Lindsay, I.D.; Gersen, H. An Analysis of Semicircular Channel Backscattering Interferometry through Ray Tracing Simulations. Sensors 2022, 22, 4301. https://doi.org/10.3390/s22114301
Mulkerns NMC, Hoffmann WH, Lindsay ID, Gersen H. An Analysis of Semicircular Channel Backscattering Interferometry through Ray Tracing Simulations. Sensors. 2022; 22(11):4301. https://doi.org/10.3390/s22114301
Chicago/Turabian StyleMulkerns, Niall M. C., William H. Hoffmann, Ian D. Lindsay, and Henkjan Gersen. 2022. "An Analysis of Semicircular Channel Backscattering Interferometry through Ray Tracing Simulations" Sensors 22, no. 11: 4301. https://doi.org/10.3390/s22114301
APA StyleMulkerns, N. M. C., Hoffmann, W. H., Lindsay, I. D., & Gersen, H. (2022). An Analysis of Semicircular Channel Backscattering Interferometry through Ray Tracing Simulations. Sensors, 22(11), 4301. https://doi.org/10.3390/s22114301