A Novel Forward-Propagation Workflow Assessment Method for Malicious Packet Detection
<p>Malicious information detection steps.</p> "> Figure 2
<p>Illustration of Accuracy and Precision Parameters.</p> "> Figure 3
<p>The CNN algorithm’s layered workflow for input–output.</p> "> Figure 4
<p>Workflow of forward propagation.</p> "> Figure 5
<p>Accuracy mean for CNN and KNN performance measure.</p> "> Figure 6
<p>Precision mean for the CNN and KNN algorithms’ performance measure.</p> "> Figure 7
<p>False negative mean for the CNN and KNN algorithms’ performance measure.</p> "> Figure 8
<p>Mean accuracy, mean precision, mean false positive, and mean false negative of CNN and KNN algorithms’ performance measure with ±1 standard deviation.</p> "> Figure 9
<p>Linear growth of same error rate in KNN algorithm.</p> "> Figure 10
<p>Simple mean accuracy for CNN and SVM algorithms.</p> "> Figure 11
<p>Mean accuracy, mean precision, mean false positive, and mean false negative of the CNN and KNN algorithms’ performance measure with ±1 standard deviation.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Proposed Methods
3.1. Accuracy and Precision for Malicious Packets
3.2. False Positive and False Negative for Malicious Packets
3.3. Working Mechanism of CNN
3.4. Forward-Propagation Work Flow
3.5. Identification Mechanism of the KNN Algorithm for Malicious Information
3.6. Malicious Identification by SVM Algorithm
3.7. Testing Procedure for the Proposed Work and Analysis
4. Experiment Results
4.1. Performance Comparison of CNN and KNN Algorithms
4.2. Performance Comparison of CNN and SVM Algorithms
5. Discussions
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, R. D 2 PI: Identifying Malware through Deep Packet Inspection with Deep Learning. Corpus ID: 53062187. 2017. Available online: https://www.semanticscholar.org/paper/D-2-PI-%3A-Identifying-Malware-through-Deep-Packet-Cheng/96011b826e2eba80c5e676de687114e9f88dcebe#citing-papers (accessed on 3 May 2022).
- Karasek, D.Y.; Kim, J.; Kemmoe, V.Y.; Bhuiyan, M.Z.A.; Cho, S.; Son, J. SuperB: Superior Behavior-based Anomaly Detection Defining Authorized Users’ Traffic Patterns. In Proceedings of the International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Thamilarasu, G.; Chawla, S. Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things. Sensors 2019, 19, 1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riyaz, B.; Ganapathy, S. A deep learning approach for effective intrusion detection in wireless networks using CNN. Soft. Comput. 2020, 24, 17265–17278. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network Traffic Classifier With Convolutional and Recurrent Neural Networks for Internet of Things. IEEE Access 2017, 5, 18042–18050. [Google Scholar] [CrossRef]
- Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D. N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 2017, 5, 21954–21961. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Ye, X. Using a Recurrent Neural Network and Restricted Boltzmann Machines for Malicious Traffic Detection. NeuroQuantology 2018, 6, 21954–21961. [Google Scholar] [CrossRef]
- Shinan, K.; Alsubhi, K.; Alzahrani, A.; Ashraf, M.U. Machine Learning-Based Botnet Detection in Software-Defined Network: A Systematic Review. Symmetry 2021, 13, 866. [Google Scholar] [CrossRef]
- Gilmore, C.; Haydaman, J. Anomaly detection and machine learning methods for network intrusion detection: An industrially focused literature review. In Proceedings of the International Conference on Security and Management (SAM), Las Vegas, NV, USA, 25–28 July 2016; pp. 292–298. [Google Scholar]
- Hwang, R.-H.; Peng, M.-C.; Nguyen, V.-L.; Chang, Y.-L. An LSTM-Based Deep Learning Approach for Classifying Malicious Traffic at the Packet Level. J. Appl. Sci. 2019, 9, 3414. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.-J.; Kang, J.-W. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security. PLoS ONE 2016, 11, e0155781. [Google Scholar] [CrossRef]
- Ahmed, I.; Lhee, K.S. Classification of packet contents for malware detection. J. Comput. Virol. 2011, 7, 279–295. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware Traffic Classification Using Convolutional Neural Networks for Representation Learning. In Proceedings of the International Conference on Information Networking, Da Nang, Vietnam, 11–13 January 2017; pp. 712–717. [Google Scholar]
- Publicly Available Library of Malwares (VX Heavens). Available online: http://vx.netlux.org/ (accessed on 14 November 2010).
- Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments, trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [Google Scholar] [CrossRef]
- Yeo, M.; Koo, Y.; Yoon, Y.; Hwang, T.; Ryu, J.; Song, J.; Park, C. Flow-based malware detection using convolutional neural network. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp. 910–913. [Google Scholar] [CrossRef]
- de Lucia, M.J.; Cotton, C. Detection of Encrypted Malicious Network Traffic using Machine Learning. In Proceedings of the IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Marín, G.; Caasas, P.; Capdehourat, G. Deepmal-deep learning models for malware traffic detection and classification. In Data Science–Analytics and Applications; Springer Vieweg: Wiesbaden, Germany, 2021; pp. 105–112. [Google Scholar]
- Soe, Y.N.; Feng, Y.; Santosa, P.I.; Hartanto, R.; Sakurai, K. Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture. Sensors 2020, 20, 4372. [Google Scholar] [CrossRef] [PubMed]
- Ronen, R.; Radu, M.; Feuerstein, C.; Yom-Tov, E.; Ahmadi, M. Microsoft Malware Classification Challenge. arXiv 2018, arXiv:1802.10135. [Google Scholar]
- Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A Deep Learning Approach to Network Intrusion Detection. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Sharafaldin, I.; Gharib, A.; Lashkari, A.H.; Ghorbani, A. Towards a reliable intrusion detection benchmark dataset. Softw. Netw. 2017, 7, 177–200. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Cho, S.-B. Web traffic anomaly detection using c-lstm neural networks. Expert Syst. Appl. 2018, 106, 66–76. [Google Scholar] [CrossRef]
- Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [Google Scholar] [CrossRef]
- Herrmann, D.; Wendolsky, R.; Federrath, H. Website Fingerprinting: Attacking Popular Privacy Enhancing Technologies with the Multinomial NaïVe-bayes Classifier. In Proceedings of the 2009 ACM Workshop on Cloud Computing Security, Chicago, IL, USA, 13 November 2009; pp. 31–42. [Google Scholar]
- Reddy, S.; Shyam, G.K. A machine learning based attack detection and mitigation using a secure SaaS framework. J. King Saud Univ.-Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Lotfollahi, M.; Siavoshani, M.J.; Zade, R.S.H.; Saberian, M. Deep packet: A novel approach for encrypted traffic classification using deep learning. Soft Comput. 2019, 24, 1999–2012. [Google Scholar] [CrossRef] [Green Version]
- Kamarudin, M.H.; Maple, C.; Watson, T.; Safa, N.S. A logitboostbased algorithm for detecting known and unknown web attacks. IEEE Access 2017, 5, 26190–26200. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Jin, H.; van den Hengel, A. Deep weaklysupervised anomaly detection. arXiv 2020, arXiv:1910.13601v2. [Google Scholar]
- Aamir, M.; Ali, T.; Shaf, A.; Irfan, M.; Saleem, M.Q. ML-DCNNet: Multi-level Deep Convolutional Neural Network for Facial Expression Recognition and Intensity Estimation. Arab. J. Sci. Eng. 2020, 45, 10605–10620. [Google Scholar] [CrossRef]
- Aamir, M.; Irfan, M.; Ali, T.; Ali, G.; Shaf, A.; S, A.S.; Al-Beshri, A.; Alasbali, T.; Mahnashi, M.H. An Adoptive Threshold-Based Multi-Level Deep Convolutional Neural Network for Glaucoma Eye Disease Detection and Classification. Diagnostics 2020, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Aamir, M.; Ali, T.; Irfan, M.; Shaf, A.; Azam, M.; Glowacz, A.; Brumercik, F.; Glowacz, W.; Alqhtani, S.; Rahman, S. Natural Disasters Intensity Analysis and Classification Based on Multispectral Images Using Multi-Layered Deep Convolutional Neural Network. Sensors 2021, 21, 2648. [Google Scholar] [CrossRef]
- Fan, G.-F.; Zhang, L.-Z.; Yu, M.; Hong, W.-C.; Dong, S.-Q. Applications of Random forest in multivariable response surface for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2022, 139, 108073. [Google Scholar] [CrossRef]
- Ding, M.; Tian, H. Pca-based network traffic anomaly detection. Tsinghua Sci. Technol. 2016, 21, 500–509. [Google Scholar] [CrossRef]
- Wang, W.; Huang, H.; Zhang, L.; Su, C. Secure and efficient mutual authentication protocol for smart grid under blockchain. Peer--Peer Netw. Appl. 2021, 14, 2681–2693. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, M.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Secure and efficient data storage and sharing scheme for blockchain-based mobile-edge computing. Trans. Emerg. Telecommun. Technol. 2021, 32, e4315. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, Y.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Resource allocation and trust computing for blockchain-enabled edge computing system. Comput. Secur. 2021, 105, 102249. [Google Scholar] [CrossRef]
- Wang, W.; Xu, H.; Alazab, M.; Gadekallu, T.R.; Han, Z.; Su, C. Blockchain-Based Reliable and Efficient Certificateless Signature for IIoT Devices. IEEE Trans. Ind. Inform. 2021. [Google Scholar] [CrossRef]
- Lian, Z.; Wang, W.; Su, C. COFEL: Communication-Efficient and Optimized Federated Learning with Local Differential Privacy. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021. [Google Scholar]
- Wang, W.; Qiu, C.; Yin, Z.; Srivastava, G.; Gadekallu, T.R.; Alsolami, F.; Su, C. Blockchain and PUF-based Lightweight Authentication Protocol for Wireless Medical Sensor Networks. IEEE Internet Things J. 2021, 9, 8883–8891. [Google Scholar] [CrossRef]
- Adimoolam, M.; Sugumaran, M.; Rajesh, R.S. Efficient encryption algorithm for video data storage. Int. J. Inf. Comput. Sci. 2018, 5, 41–49. [Google Scholar]
- Adimoolam, M.; Sugumaran, M.; Rajesh, R.S. A Novel Efficient Redundancy free Data Communication Model for Intelligent Surveillance System in WSN. J. Adv. Res. Dyn. Control Syst. 2018, 10, 743–754. [Google Scholar]
- Adimoolam, M.; Sugumaran, M.; Rajesh, R.S. A Novel Efficient Clustering and Secure Data Transmission Model for Spatiotemporal Data in WSN. Int. J. Pure Appl. Math. 2018, 118, 117–125. [Google Scholar]
S. No | Identification Approach | Learning Algorithm | Application | Performance Parameters | Benefits |
---|---|---|---|---|---|
1 | Users’ time-series data from network packets from cicids2017 dataset [3] | DL algorithm | Malicious behavior identification | Accuracy and recall, false positive | Time-series-based detection is applicable for real-time detection |
2 | Malicious packet identification techniques [6,7,8] | ML algorithm | Malicious traffic identification | Accuracy | ML enabled is essential for multimedia network traffic |
3 | Botnet detection procedure using flow-based detection [9,11] | Supervised ML algorithm | Malicious packet information identification | Precise time and accuracy | Applicable for chat bot in real time |
S. No | Method | Application | Datasets Used | Benefits |
---|---|---|---|---|
1 | Network-based anomaly detection [3] | IoT traffic | Commercial IoT dataset | It will be most suited for malicious user detection with IoT |
2 | CNN-based malware traffic detection [1] | Network traffic classification | Network traffic data images | Image-based malicious information can be detected with CNN |
3 | RNN model [7,8] | Packet feature extraction | Network traffic | Packet feature extraction is an easy way to detect malicious information with RNN |
4 | ML-based model [16] | Malicious packet identification | Network traffic | An emerging application for network traffic |
5 | CNN-based packet flow [17] | Malicious packet based on packet features | Flow packet dataset | Flow packet dataset is best suited to detect malicious information with CNN |
6 | Encrypted malicious packet [18] | Encrypted malicious packet identification | Real-time encrypted packet | Advanced technique without disclosing intended information |
Identification Approach | Has Malicious Information | Does Not Have Malicious Information |
---|---|---|
Identified as malicious | True positive | False positive |
Not identified as malicious | False negative | True negative |
Algorithm | Accuracy | Precision | FPR | FNR |
---|---|---|---|---|
CNN | 98.604 | 98.747 | 1.365 | 4.106 |
97.754 | 99.497 | 1.615 | 2.966 | |
99.704 | 98.737 | 2.375 | 4.74 | |
97.794 | 99.512 | 1.6 | 2.888 | |
99.714 | 98.696 | 2.416 | 4.6 | |
99.874 | 99.609 | 1.503 | 3.872 | |
99.674 | 98.774 | 2.338 | 4.917 | |
98.894 | 99.531 | 1.581 | 2.639 | |
97.694 | 98.671 | 2.441 | 2.613 | |
99.984 | 99.666 | 1.446 | 1.648 | |
97.644 | 98.531 | 2.581 | 3.482 | |
KNN | 95.489 | 96.635 | 4.472 | 7.219 |
96.641 | 96.385 | 3.732 | 5.079 | |
95.591 | 95.625 | 4.482 | 6.853 | |
94.68 | 96.4 | 3.712 | 6.001 | |
95.6 | 95.584 | 4.532 | 6.713 | |
94.762 | 96.497 | 3.612 | 5.985 | |
95.559 | 95.662 | 4.452 | 7.03 | |
94.776 | 96.419 | 3.692 | 5.752 | |
95.581 | 95.559 | 4.552 | 6.726 | |
96.866 | 95.554 | 3.562 | 5.761 | |
95.528 | 95.419 | 3.692 | 5.595 |
Group Statistics | |||||
---|---|---|---|---|---|
Algorithm | N | Mean | Std. Deviation | Std. Error Mean | |
Accuracy | CNN | 11 | 98.848 | 0.982 | 0.296 |
KNN | 11 | 95.551 | 0.700 | 0.211 | |
Precision | CNN | 11 | 99.088 | 0.460 | 0.1389 |
KNN | 11 | 95.976 | 0.478 | 0.144 | |
False positive | CNN | 11 | 1.932 | 0.484 | 0.1461 |
KNN | 11 | 4.044 | 0.437 | 0.131 | |
False negative | CNN | 11 | 3.497 | 1.043 | 0.314 |
KNN | 11 | 6.24672 | 0.690 | 0.208 |
Independent Samples Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Levene’s Test for Equality of Variances | t-test for Equality of Means | |||||||||
F | Sig. | t | df | Sig. (2-tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | |||
Lower | Upper | |||||||||
Accuracy | Equal Variances Assumed | 4.472 | 0.047 | 9.059 | 20 | 000 | 3.296 | 0.363 | 2.537 | 4.055 |
Equal Variances Not Assumed | 9.059 | 18.077 | 000 | 3.296 | 0.363 | 2.532 | 4.060 | |||
Precision | Equal Variances Assumed | 0.138 | 0.714 | 15.540 | 20 | 000 | 3.112 | 0.200 | 2.694 | 3.529 |
Equal Variances Not Assumed | 15.540 | 19.973 | 000 | 3.112 | 0.200 | 2.694 | 3.529 | |||
False positive | Equal Variances Assumed | 1.201 | 0.286 | −10.728 | 20 | 000 | −2.111 | 0.196 | −2.522 | −1.701 |
Equal Variances Not Assumed | −10.728 | 19.790 | 000 | −2.111 | 0.196 | −2.522 | −1.700 | |||
False negative | Equal Variances Assumed | 2.175 | 0.156 | −7.289 | 20 | 000 | −2.749 | 0.377 | −3.536 | −1.962 |
Equal Variances Not Assumed | −7.289 | 17.355 | 000 | −2.749 | 0.377 | −3.543 | −1.954 |
Algorithm | Accuracy | Precision | FPR | FNR |
---|---|---|---|---|
CNN | 98.604 | 98.747 | 1.365 | 4.106 |
97.754 | 99.497 | 1.615 | 2.966 | |
99.704 | 98.737 | 2.375 | 4.74 | |
97.794 | 99.512 | 1.6 | 2.888 | |
99.714 | 98.696 | 2.416 | 4.6 | |
99.874 | 99.609 | 1.503 | 3.872 | |
99.674 | 98.774 | 2.338 | 4.917 | |
98.894 | 99.531 | 1.581 | 2.639 | |
97.694 | 98.671 | 2.441 | 2.613 | |
99.984 | 99.666 | 1.446 | 1.648 | |
97.644 | 98.531 | 2.581 | 3.482 | |
SVM | 94.37 | 95.246 | 5.459 | 8.188 |
95.522 | 94.996 | 4.719 | 6.048 | |
94.472 | 94.236 | 5.469 | 7.822 | |
93.561 | 95.011 | 4.699 | 6.97 | |
94.481 | 94.195 | 5.519 | 7.682 | |
93.643 | 95.108 | 4.599 | 6.954 | |
94.44 | 94.273 | 5.439 | 7.999 | |
93.657 | 95.03 | 4.679 | 6.721 | |
94.462 | 94.17 | 5.539 | 7.695 | |
95.747 | 94.165 | 4.549 | 6.73 | |
94.409 | 94.03 | 4.679 | 6.564 |
Group Statistics | |||||
---|---|---|---|---|---|
Algorithm | N | Mean | Std. Deviation | Std. Error Mean | |
Accuracy | CNN | 11 | 98.84855 | 0.982796 | 0.296324 |
SVM | 11 | 94.43319 | 0.700602 | 0.211240 | |
Precision | CNN | 11 | 99.08827 | 0.460946 | 0.138980 |
SVM | 11 | 94.58727 | 0.478196 | 0.144181 | |
False positive | CNN | 11 | 1.93287 | 0.484868 | 0.146193 |
SVM | 11 | 5.03173 | 0.437266 | 0.131841 | |
False negative | CNN | 11 | 3.49736 | 1.043027 | 0.314484 |
SVM | 11 | 7.21573 | 0.690754 | 0.208270 |
Independent Samples Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Levene’s Test for Equality of Variances | t-Test for Equality of Means | |||||||||
F | Sig. | t | df | Sig. (2-Tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | |||
Lower | Upper | |||||||||
Accuracy | Equal variances assumed | 4.472 | 0.047 | 9.059 | 20 | 000 | 3.296563 | 0.363903 | 2.537476 | 4.055650 |
Equal variances not assumed | 9.059 | 18.077 | 000 | 3.296563 | 0.36390 | 2.532266 | 4.060860 | |||
Precision | Equal variances assumed | 0.138 | 0.714 | 15.540 | 20 | 000 | 3.112078 | 0.20026 | 2.694333 | 3.529823 |
Equal variances not assumed | 15.540 | 19.973 | 000 | 3.112078 | 0.20026 | 2.694297 | 3.529859 | |||
False positive | Equal variances assumed | 1.201 | 0.286 | −10.728 | 20 | 000 | −2.111853 | 0.19686 | −2.522500 | −1.701207 |
Equal variances not assumed | −10.728 | 19.790 | 000 | −2.111853 | 0.19686 | −2.522779 | −1.700928 | |||
False negative | Equal variances assumed | 2.175 | 0.156 | −7.289 | 20 | 000 | −2.749358 | 0.37717 | −3.536135 | −1.962582 |
Equal variances not assumed | −7.289 | 17.355 | 000 | −2.749358 | 0.37717 | −3.543894 | −1.954823 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balamurugan, N.M.; Kannadasan, R.; Alsharif, M.H.; Uthansakul, P. A Novel Forward-Propagation Workflow Assessment Method for Malicious Packet Detection. Sensors 2022, 22, 4167. https://doi.org/10.3390/s22114167
Balamurugan NM, Kannadasan R, Alsharif MH, Uthansakul P. A Novel Forward-Propagation Workflow Assessment Method for Malicious Packet Detection. Sensors. 2022; 22(11):4167. https://doi.org/10.3390/s22114167
Chicago/Turabian StyleBalamurugan, Nagaiah Mohanan, Raju Kannadasan, Mohammed H. Alsharif, and Peerapong Uthansakul. 2022. "A Novel Forward-Propagation Workflow Assessment Method for Malicious Packet Detection" Sensors 22, no. 11: 4167. https://doi.org/10.3390/s22114167