Acoustic Signal-Based Defect Identification for Directed Energy Deposition-Arc Using Wavelet Time–Frequency Diagrams
<p>Overall workflow for defect identification.</p> "> Figure 2
<p>Experimental system.</p> "> Figure 3
<p>Weld morphology under different process parameters.</p> "> Figure 4
<p>Conversion method of the three types of acoustic signals from 1D signals to 2D time–frequency diagrams.</p> "> Figure 5
<p>Conventional CNN architecture for classification.</p> "> Figure 6
<p>Time–frequency diagrams of acoustic signals. (<b>a</b>) Normal, (<b>b</b>) discontinuity, and (<b>c</b>) pore.</p> "> Figure 7
<p>Training curve of CNNs. (<b>a</b>) Training loss, (<b>b</b>) validation loss, (<b>c</b>) training accuracy, and (<b>d</b>) validation accuracy.</p> "> Figure 8
<p>Confusion matrix. (<b>a</b>) AlexNet, (<b>b</b>) ResNet-18, (<b>c</b>) VGG-16, and (<b>d</b>) MobileNetV3.</p> "> Figure 9
<p>Accuracy of four models for three different categories.</p> "> Figure 10
<p>Visualization of CNN models using T-SNE. (<b>a</b>) AlexNet, (<b>b</b>) ResNet-18, (<b>c</b>) VGG-16, and (<b>d</b>) MobileNetV3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Data Acquisition and Pre-Processing
2.3. CNN Architecture
2.4. Model Hyperparameter Configuration
3. Results and Discussion
3.1. Acoustic Signal Analysis
3.2. Evaluation of Model Classification Performance
4. Conclusions
- The analysis of acoustic signals revealed that the energy distribution of normal and abnormal acoustic signals is significantly different in both the time and frequency domains. The energy distribution of normal acoustic signals is more stable. The acoustic signals of discontinuity defects have more energy in the high-frequency band compared with normal acoustic signals. Additionally, there is a region of sudden decline in energy within the time domain. The acoustic signals of pore defects are characterized by high levels of instability and irregularity.
- Four different CNN architectures were compared, namely, AlexNet, VGG-16, ResNet-18, and MobileNetV3, to identify the most effective model for the classification task in this study. The four CNN models were trained on a dataset consisting of time–frequency diagrams. MobileNetV3 achieved a classification accuracy of 98.31%, while AlexNet, ResNet-18, and VGG-16 achieved 96.35%, 97.92%, and 97.01%, respectively. The results demonstrate that the methodology proposed in this study is an effective means of identifying defects in the DED-arc process.
- In terms of accuracy, number of model parameters, training time, and detection time, the MobilenetV3 model achieved the best performance. It had the highest classification accuracy, the smallest number of parameters, the shortest training time, and a fast detection rate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treutler, K.; Wesling, V. The Current State of Research of Wire Arc Additive Manufacturing (WAAM): A Review. Appl. Sci. 2021, 11, 8619. [Google Scholar] [CrossRef]
- Yi, H.; Jia, L.; Ding, J.L.; Li, H.J. Achieving material diversity in wire arc additive manufacturing: Leaping from alloys to composites via wire innovation. Int. J. Mach. Tool Manuf. 2024, 194, 104103. [Google Scholar] [CrossRef]
- Meena, R.P.; Yuvaraj, N.; Vipin. A review on wire arc additive manufacturing based on cold metal transfer. Mater. Manuf. Process. 2024, 39, 1315–1341. [Google Scholar] [CrossRef]
- Wu, B.T.; Pan, Z.X.; Ding, D.H.; Cuiuri, D.; Li, H.J.; Xu, J.; Norrish, J. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Li, Z.X.; Chang, B.H.; Wang, K.M.; Zhang, H.Y.; Liang, Z.Y.; Wang, L.; Liu, C.M.; Du, D. Closed-loop control of alternating dual-electron beams for molten pool regulation during in-situ additive manufacturing. J. Mater. Process. Tech. 2023, 319, 118087. [Google Scholar] [CrossRef]
- Jin, W.W.; Zhang, C.Q.; Jin, S.Y.; Tian, Y.T.; Wellmann, D.; Liu, W. Wire Arc Additive Manufacturing of Stainless Steels: A Review. Appl. Sci. 2020, 10, 1563. [Google Scholar] [CrossRef]
- Wu, Q.R.; Yang, F.; Lv, C.M.; Liu, C.M.; Tang, W.L.; Yang, J.Q. In-Situ Quality Intelligent Classification of Additively Manufactured Parts Using a Multi-Sensor Fusion Based Melt Pool Monitoring System. Addit. Manuf. Front. 2024, 200153. [Google Scholar] [CrossRef]
- Chandra, M.; Rajak, S.; Vimal, K.E.K. Deep learning-based framework for the observation of real-time melt pool and detection of anomaly in wire-arc additive manufacturing. Mater. Manuf. Process. 2024, 39, 761–777. [Google Scholar] [CrossRef]
- Wu, Q.R.; Lu, J.P.; Liu, C.M.; Shi, X.Z.; Ma, Q.; Tang, S.Y.; Fan, H.L.; Ma, S.Y. Obtaining uniform deposition with variable wire feeding direction during wire-feed additive manufacturing. Mater. Manuf. Process. 2017, 32, 1881–1886. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Duarte, V.; Miranda, R.M.; Santos, T.G.; Oliveira, J.P. Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM). Materials 2019, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Sanaei, N.; Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater. Sci. 2021, 117, 100724. [Google Scholar] [CrossRef]
- Wu, Q.R.; Tang, W.L.; Yang, J.Q.; Shi, X.Z. Comparison of thermomechanical responses of single-arc and dual-arc parallel additive manufacturing. Sci. Technol. Weld. Join. 2023, 28, 580–588. [Google Scholar] [CrossRef]
- Yi, H.; Yang, L.; Jia, L.; Huang, Y.Z.; Cao, H.J. Porosity in wire-arc directed energy deposition of aluminum alloys: Formation mechanisms, influencing factors and inhibition strategies. Addit. Manuf. 2024, 84, 104108. [Google Scholar] [CrossRef]
- Xia, C.Y.; Pan, Z.X.; Li, Y.X.; Chen, J.; Li, H.J. Vision-based melt pool monitoring for wire-arc additive manufacturing using deep learning method. Int. J. Adv. Manuf. Tech. 2022, 120, 551–562. [Google Scholar] [CrossRef]
- Cho, H.W.; Shin, S.J.; Seo, G.J.; Kim, D.B.; Lee, D.H. Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: Molybdenum material. J. Mater. Process. Tech. 2022, 302, 117495. [Google Scholar] [CrossRef]
- Li, W.H.; Zhang, H.O.; Wang, G.L.; Xiong, G.; Zhao, M.H.; Li, G.K.; Li, R.S. Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing. Robot. Comput.-Integr. Manuf. 2023, 80, 102470. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Wang, L.Y.; Xu, C.; Cheng, J.J.; Wang, K.H. Early-Warning System for Copper Alloy Abnormal Molten Pool in Wire-Arc Additive Manufacturing via Convolutional Neural Network Method. J. Mater. Eng. Perform. 2023, 32, 11230–11239. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, L.D.; Yang, Z.C.; Ning, J.S. In Situ Monitoring and Innovative Feature Fusion Neural Network for Enhanced Laser-Directed Energy Deposition Track Geometry Prediction and Control. IEEE Trans. Instrum. Meas. 2024, 73, 5022110. [Google Scholar] [CrossRef]
- Li, J.C.; Zhou, Q.; Cao, L.C.; Wang, Y.Z.; Hu, J.X. A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. J. Manuf. Syst. 2022, 64, 429–442. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hong, G.S.; Ye, D.S.; Zhu, K.P.; Fuh, J.Y.H. Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Mater. Des. 2018, 156, 458–469. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Kamps, T.; Kaplan, A.F.H.; Volpp, J. Acoustic emissions in directed energy deposition processes. Int. J. Adv. Manuf. Tech. 2022, 119, 3517–3532. [Google Scholar] [CrossRef]
- Grad, L.; Grum, J.; Polajnar, I.; Slabe, J.M. Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding. Int. J. Mach. Tool Manuf. 2004, 44, 555–561. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Wen, G.R.; Chen, S.B. Audible Sound-Based Intelligent Evaluation for Aluminum Alloy in Robotic Pulsed GTAW: Mechanism, Feature Selection, and Defect Detection. IEEE Trans. Ind. Inform. 2018, 14, 2973–2983. [Google Scholar] [CrossRef]
- Surovi, N.A.; Soh, G.S. Acoustic feature based geometric defect identification in wire arc additive manufacturing. Virtual Phys. Prototyp. 2023, 18, e2210553. [Google Scholar] [CrossRef]
- Vidyasagar, K.E.C.; Kumar, K.R.; Sai, G.N.K.A.; Ruchita, M.; Saikia, M.J. Signal to Image Conversion and Convolutional Neural Networks for Physiological Signal Processing: A Review. IEEE Access 2024, 12, 66726–66764. [Google Scholar] [CrossRef]
- Ren, Z.S.; Gao, L.; Clark, S.J.; Fezzaa, K.; Shevchenko, P.; Choi, A.; Everhart, W.; Rollett, A.D.; Chen, L.Y.; Sun, T. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion. Science 2023, 379, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Drissi-Daoudi, R.; Masinelli, G.; de Formanoir, C.; Wasmer, K.; Jhabvala, J.; Log, R.E. Acoustic emission for the prediction of processing regimes in Laser Powder Bed Fusion, and the generation of processing maps. Addit. Manuf. 2023, 67, 103484. [Google Scholar] [CrossRef]
- Viswanathan, V.; McCloskey, A.; Mathur, R.; Nguyen, D.T.; Faisal, N.H.; Prathuru, A.; Llavori, I.; Murphy, A.; Tiwari, A.; Matthews, A.; et al. Machine learning model of acoustic signatures: Towards digitalised thermal spray manufacturing. Mech. Syst. Signal Process. 2024, 208, 111030. [Google Scholar] [CrossRef]
- Li, Y.X.; Polden, J.; Pan, Z.X.; Cui, J.Y.; Xia, C.Y.; He, F.Y.; Mu, H.C.; Li, H.J.; Wang, L. A defect detection system for wire arc additive manufacturing using incremental learning. J. Ind. Inf. Integr. 2022, 27, 100291. [Google Scholar] [CrossRef]
- Prem, P.R.; Sanker, A.P.; Sebastian, S.; Kaliyavaradhan, S.K. A Review on Application of Acoustic Emission Testing During Additive Manufacturing. J. Nondestruct. Eval. 2023, 42, 96. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Santos, T.G.; Miranda, R.M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Prog. Mater. Sci. 2020, 107, 100590. [Google Scholar] [CrossRef]
- Chen, X.; Kong, F.R.; Fu, Y.H.; Zhao, X.S.; Li, R.S.; Wang, G.L.; Zhang, H.O. A review on wire-arc additive manufacturing: Typical defects, detection approaches, and multisensor data fusion-based model. Int. J. Adv. Manuf. Tech. 2021, 117, 707–727. [Google Scholar] [CrossRef]
- Li, H.C.; Ma, Y.X.; Duan, M.R.; Wang, X.; Che, T. Defects detection of GMAW process based on convolutional neural network algorithm. Sci. Rep. 2023, 13, 21219. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, M.; Wolff, S.J. Convolutional Neural Network applications in additive manufacturing: A review. Adv. Ind. Manuf. Eng. 2022, 4, 100072. [Google Scholar] [CrossRef]
- Scime, L.; Beuth, J. A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 2018, 24, 273–286. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.L.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef]
- Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 2023, 56, 1905–1969. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.X.; Wang, W.J.; Zhu, Y.K.; Pang, R.M.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar] [CrossRef]
- Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
Alloy | C | Mn | Si | S | P | Cr | Ni | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|
H08Mn2SiA | 0.08 | 1.97 | 0.72 | 0.02 | 0.02 | 0.04 | 0.01 | 0.2 | Bal |
Frequency Response | Dynamic Range | Sensitivity | Output Interface |
---|---|---|---|
20 Hz–20 kHz | 29 dB–127 dB | 48.3 mV/Pa | SMB |
Status | Welding Current (A) | Welding Voltage (V) | Welding Speed (mm/s) | LHI (J/mm) | Protective Gas Flow (L/min) |
---|---|---|---|---|---|
Normal | 180 | 30 | 8 | 675 | 20 |
180 | 28 | 8 | 630 | 20 | |
180 | 26 | 8 | 585 | 20 | |
166 | 26 | 8 | 540 | 20 | |
152 | 26 | 8 | 495 | 20 | |
Discontinuity | 220 | 30 | 40 | 165 | 20 |
228 | 29 | 40 | 165 | 20 | |
236 | 28 | 40 | 165 | 20 | |
244 | 27 | 45 | 165 | 20 | |
254 | 26 | 50 | 165 | 20 | |
Pore | 180 | 30 | 8 | 675 | 4 |
180 | 28 | 8 | 630 | 4 | |
180 | 26 | 8 | 585 | 2 | |
166 | 26 | 8 | 540 | 2 | |
152 | 26 | 8 | 495 | 0 |
Category | Training Set | Validation Set | Testing Set |
---|---|---|---|
Normal | 820 | 204 | 256 |
Discontinuity | 820 | 204 | 256 |
Pore | 820 | 204 | 256 |
Parameters | Value | |
---|---|---|
Max epochs | 300 | |
Batch size | 32 | |
Initial leaning rate | 0.001 | |
Learning rate decay strategy | Lr decay for every two epochs: Lr × 0.973 | |
Optimizer (AdamW) | Weight decay | 0.001 |
Epsilon | 1 × 10−8 | |
Betas | (0.9, 0.999) |
Model | Category | Precision | Recall | F1-Score |
---|---|---|---|---|
AlexNet | Discontinuity | 97.24 | 96.48 | 96.86 |
Normal | 94.27 | 96.48 | 95.37 | |
Pore | 97.62 | 96.09 | 96.85 | |
ResNet-18 | Discontinuity | 98.08 | 99.61 | 98.84 |
Normal | 97.64 | 96.88 | 97.25 | |
Pore | 98.03 | 97.27 | 97.65 | |
VGG-16 | Discontinuity | 97.67 | 98.44 | 98.05 |
Normal | 95.38 | 96.88 | 96.12 | |
Pore | 98.00 | 95.70 | 96.84 | |
MobileNetV3 | Discontinuity | 98.45 | 99.22 | 98.83 |
Normal | 98.42 | 97.27 | 97.84 | |
Pore | 98.05 | 98.44 | 98.25 |
Model | Parameters (M) | Average Training Time per Epoch (s) | Detection Time per Image (s) | Image Input Size (px2) |
---|---|---|---|---|
AlexNet | 57.02 | 16.61 | 0.0111 | 224 × 224 |
ResNet-18 | 11.18 | 17.63 | 0.0148 | 224 × 224 |
VGG-16 | 134.28 | 68.94 | 0.0667 | 224 × 224 |
MobileNetV3 | 1.52 | 13.01 | 0.0217 | 224 × 224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wu, Q.; Tang, W.; Yang, J. Acoustic Signal-Based Defect Identification for Directed Energy Deposition-Arc Using Wavelet Time–Frequency Diagrams. Sensors 2024, 24, 4397. https://doi.org/10.3390/s24134397
Zhang H, Wu Q, Tang W, Yang J. Acoustic Signal-Based Defect Identification for Directed Energy Deposition-Arc Using Wavelet Time–Frequency Diagrams. Sensors. 2024; 24(13):4397. https://doi.org/10.3390/s24134397
Chicago/Turabian StyleZhang, Hui, Qianru Wu, Wenlai Tang, and Jiquan Yang. 2024. "Acoustic Signal-Based Defect Identification for Directed Energy Deposition-Arc Using Wavelet Time–Frequency Diagrams" Sensors 24, no. 13: 4397. https://doi.org/10.3390/s24134397
APA StyleZhang, H., Wu, Q., Tang, W., & Yang, J. (2024). Acoustic Signal-Based Defect Identification for Directed Energy Deposition-Arc Using Wavelet Time–Frequency Diagrams. Sensors, 24(13), 4397. https://doi.org/10.3390/s24134397