MWIRGas-YOLO: Gas Leakage Detection Based on Mid-Wave Infrared Imaging
<p>Three-layer radiation transfer model and gas infrared imaging detection system. <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">M</mi> <mrow> <mi>B</mi> <mi>G</mi> </mrow> </msub> </semantics></math> is the background spectral radiation, <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">M</mi> <mrow> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">M</mi> <mrow> <mi>n</mi> <mi>o</mi> <mo>_</mo> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> </msub> </semantics></math> are gas path and non-gas path radiation.</p> "> Figure 2
<p>Infrared gas image samples.The red bounding box represents the leaked gas. Below the image are the leak distance, gas type, and leak rate.</p> "> Figure 3
<p>Infrared gas images categorized into three types; the top left of the image shows enlarged views of the gas region image and its corresponding frame difference image. (<b>a</b>) Dense, where the gas plume in the scene is easily observable at a glance. (<b>b</b>) Thin, requiring careful observation of local areas to detect the gas plume. (<b>c</b>) Indiscernible, where the gas plume cannot be directly observed in a single frame and requires observation of multiple frames before and after to identify its position.</p> "> Figure 4
<p>Histogram of mask pixel count. A mask pixel count ranging from 65 to 475 in a single image is considered a small object.</p> "> Figure 5
<p>MWIRGas-YOLO network architecture.</p> "> Figure 6
<p>Channel attention submodule.</p> "> Figure 7
<p>Spatial attention submodule.</p> "> Figure 8
<p>Global attention mechanism.</p> "> Figure 9
<p>Prior model detection results. (<b>a</b>) Visible smoke image detection results. (<b>b</b>) Infrared gas image detection results.</p> "> Figure 10
<p>The feature map before and after embedding GAM, and the red bounding box is the activation of the target feature. (<b>a</b>) Results of backbone comparison. (<b>b</b>) Results of neck comparison.</p> "> Figure 11
<p>Test comparison diagram. (<b>a</b>) YOLOv8-seg test result. (<b>b</b>) MWIRGas-YOLO test result.</p> "> Figure 12
<p>Visual comparison of training process. (<b>a</b>) Precision curve. (<b>b</b>) Recall curve. (<b>c</b>) mAP50 curve. (<b>d</b>) mAP50:95 curve.</p> "> Figure 13
<p>Visualization of detection and segmentation results by different methods on MWIRGas-Seg dataset.</p> ">
Abstract
:1. Introduction
- A high-sensitivity and high-response imaging effect was achieved using a cooled mid-wave infrared (MWIR) imager. A dataset labeled with gas leak segmentation, MWIRGas-Seg, was collected and underwent visual classification and small target counting.
- For the task of gas leak detection in MWIR imaging, an algorithm based on YOLOv8-seg is proposed. This algorithm, named MWIRGas-YOLO, effectively detects and segments gas leaks within a given scene.
- A global attention mechanism was introduced during the feature fusion stage to reduce image information dispersion, enhance gas plume localization, and improve the extraction of small target gas plume features. Transfer learning was applied using a visible light smoke dataset with similar characteristics to make the pre-trained model more adept at handling and extracting gas features.
- Experimental validation confirms that MWIRGas-YOLO achieves more effective feature extraction and fusion of infrared gas plume targets, outperforming the original YOLOv8-seg and several typical image detection and segmentation algorithms. It is suitable for infrared gas image detection tasks.
2. Related Works
2.1. Gas Leakage Detection
2.2. YOLO Detection Models
3. Datasets
3.1. Data Acquisition
3.2. Dataset Statistics
4. Methods
4.1. YOLOv8-Seg Model
4.2. Global Attention Mechanism
4.3. Small Target Detection Layer
4.4. Transfer Learning
5. Results and Analysis
5.1. Experimental Configuration and Model Setup
5.2. Evaluation Metrics
5.3. Experimental Analysis of Global Attention Mechanism
5.4. Experimental Analysis of Small Target Detection Layer
5.5. Experimental Analysis of Transfer Learning
5.6. Ablation Experiment
5.7. Contrast Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Luo, D.; Sun, Y.; GholamHosseini, H. Classification and identification of industrial gases based on electronic nose technology. Sensors 2019, 19, 5033. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Qian, X.M.; Liu, Z.Y.; Huang, P.; Yuan, M.Q. Analysis and assessment of the Qingdao crude oil vapor explosion accident: Lessons learnt. J. Loss Prev. Process Ind. 2015, 33, 289–303. [Google Scholar] [CrossRef]
- Zipser, L.; Wächter, F.; Franke, H. Acoustic gas sensors using airborne sound properties. Sensors Actuators B Chem. 2000, 68, 162–167. [Google Scholar] [CrossRef]
- Sekhar, P.K.; Brosha, E.L. Trace detection of 2, 4, 6-trinitrotoluene using electrochemical gas sensor. IEEE Sensors J. 2014, 15, 1624–1629. [Google Scholar] [CrossRef]
- Xue, F.; Adedokun, G.; Xie, D.; Liu, R.; Zhang, Y.; Muhammad, M.; Xu, L.; Wu, F. A low power four-channel metal oxide semiconductor gas sensor array with T-shaped structure. J. Microelectromech. Syst. 2022, 31, 275–282. [Google Scholar] [CrossRef]
- Meribout, M.; Khezzar, L.; Azzi, A.; Ghendour, N. Leak detection systems in oil and gas fields: Present trends and future prospects. Flow Meas. Instrum. 2020, 75, 101772. [Google Scholar] [CrossRef]
- Meribout, M. Gas leak-detection and measurement systems: Prospects and future trends. IEEE Trans. Instrum. Meas. 2021, 70, 4505813. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed]
- Safitri, A.; Gao, X.; Mannan, M.S. Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique. J. Loss Prev. Process Ind. 2011, 24, 138–145. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Y.; Lv, T.; Li, Y.; Chen, L.; Shen, Q.; Cao, X. Explore spatio-temporal aggregation for insubstantial object detection: Benchmark dataset and baseline. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 3104–3115. [Google Scholar]
- Barber, R.; Rodriguez-Conejo, M.A.; Melendez, J.; Garrido, S. Design of an infrared imaging system for robotic inspection of gas leaks in industrial environments. Int. J. Adv. Robot. Syst. 2015, 12, 23. [Google Scholar] [CrossRef]
- Kang, R.; Liatsis, P.; Kyritsis, D.C. Emission quantification via passive infrared optical gas imaging: A review. Energies 2022, 15, 3304. [Google Scholar] [CrossRef]
- Rogalski, A. Progress in focal plane array technologies. Prog. Quantum Electron. 2012, 36, 342–473. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Z.; Xu, J.; Dong, F.; Wang, F.; Bai, Z.; Zhou, Y.; Chai, X.; Li, H.; Ding, R.; et al. Fabrication and characterization of InAs/GaSb type-II superlattice long-wavelength infrared detectors aiming high temperature sensitivity. J. Light. Technol. 2020, 38, 6129–6134. [Google Scholar] [CrossRef]
- Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and state of the art. Found. Trends® Comput. Graph. Vis. 2020, 12, 1–308. [Google Scholar] [CrossRef]
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled medical computer vision. NPJ Digit. Med. 2021, 4, 5. [Google Scholar] [CrossRef]
- Shao, H.; Xia, M.; Wan, J.; de Silva, C.W. Modified stacked autoencoder using adaptive Morlet wavelet for intelligent fault diagnosis of rotating machinery. IEEE/ASME Trans. Mechatronics 2021, 27, 24–33. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, K.; Xiong, J.; Zhang, Q. Moving object detection based on temporal information. IEEE Signal Process. Lett. 2014, 21, 1403–1407. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Singh, D.K. Review of optical flow technique for moving object detection. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 409–413. [Google Scholar]
- Xue, W.; Jiang, T. An adaptive algorithm for target recognition using Gaussian mixture models. Measurement 2018, 124, 233–240. [Google Scholar] [CrossRef]
- Barnich, O.; Van Droogenbroeck, M. ViBe: A powerful random technique to estimate the background in video sequences. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 945–948. [Google Scholar]
- Lu, Q.; Li, Q.; Hu, L.; Huang, L. An effective Low-Contrast SF6 gas leakage detection method for infrared imaging. IEEE Trans. Instrum. Meas. 2021, 70, 5009009. [Google Scholar] [CrossRef]
- Shen, Z.; Schmoll, R.; Kroll, A. Measurement of Fluid Flow Velocity by Using Infrared and Visual Cameras: Comparison and Evaluation of Optical Flow Estimation Algorithms. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- Jing, W.; Pan, Y.; Minghe, W.; Li, L.; Weiqi, J.; Wei, C.; Bingcai, S. Thermal imaging detection method of leak gas clouds based on support vector machine. Acta Opt. Sin. 2022, 42, 0911002. [Google Scholar]
- Si, W.; Zhao, Y.; Wang, Y.; Li, B.; Tong, G.; Yu, Y. Monitoring SF6 Gas Leakage Based on a Customized Binocular System. Sensors 2024, 24, 993. [Google Scholar] [CrossRef]
- Yan, W.; Liu, W.; Zhang, Q.; Bi, H.; Jiang, C.; Liu, H.; Wang, T.; Dong, T.; Ye, X. Multi-source Multi-Modal Feature Fusion for Small Leak Detection in Gas Pipelines. IEEE Sensors J. 2023, 24, 1857–1865. [Google Scholar] [CrossRef]
- Wang, J.; Tchapmi, L.P.; Ravikumar, A.P.; McGuire, M.; Bell, C.S.; Zimmerle, D.; Savarese, S.; Brandt, A.R. Machine vision for natural gas methane emissions detection using an infrared camera. Appl. Energy 2020, 257, 113998. [Google Scholar] [CrossRef]
- Wang, J.; Ji, J.; Ravikumar, A.P.; Savarese, S.; Brandt, A.R. VideoGasNet: Deep learning for natural gas methane leak classification using an infrared camera. Energy 2022, 238, 121516. [Google Scholar] [CrossRef]
- Shi, J.; Chang, Y.; Xu, C.; Khan, F.; Chen, G.; Li, C. Real-time leak detection using an infrared camera and Faster R-CNN technique. Comput. Chem. Eng. 2020, 135, 106780. [Google Scholar] [CrossRef]
- Bin, J.; Bahrami, Z.; Rahman, C.A.; Du, S.; Rogers, S.; Liu, Z. Foreground Fusion-Based Liquefied Natural Gas Leak Detection Framework From Surveillance Thermal Imaging. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 7, 1151–1162. [Google Scholar] [CrossRef]
- Park, J.S.; Song, J.K. FCN based gas leakage segmentation and improvement using transfer learning. In Proceedings of the 2019 IEEE Student Conference on Electric Machines and Systems (SCEMS 2019), Busan, Republic of Korea, 1–3 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Wang, Q.; Xing, M.; Sun, Y.; Pan, X.; Jing, Y. Optical gas imaging for leak detection based on improved deeplabv3+ model. Opt. Lasers Eng. 2024, 175, 108058. [Google Scholar] [CrossRef]
- Bhatt, R.; Gokhan Uzunbas, M.; Hoang, T.; Whiting, O.C. Segmentation of Low-Level Temporal Plume Patterns from IR Video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Lin, H.; Gu, X.; Hu, J.; Gu, X. Gas Leakage Segmentation in Industrial Plants. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1639–1644. [Google Scholar]
- Xiaojing, G.; Haoqi, L.; Dewu, D.; Xingsheng, G. An infrared gas imaging and instance segmentation based gas leakage detection method. J. East China Univ. Sci. Technol. 2023, 49, 76–86. [Google Scholar]
- Badawi, D.; Ayhan, T.; Ozev, S.; Yang, C.; Orailoglu, A.; Cetin, A.E. Detecting gas vapor leaks using uncalibrated sensors. IEEE Access 2019, 7, 155701–155710. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF international Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166. [Google Scholar]
- Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. Solo: Segmenting objects by locations. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XVIII 16. Springer: Cham, Switzerland, 2020; pp. 649–665. [Google Scholar]
- Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. Solov2: Dynamic and fast instance segmentation. Adv. Neural Inf. Process. Syst. 2020, 33, 17721–17732. [Google Scholar]
- Fang, Y.; Yang, S.; Wang, X.; Li, Y.; Fang, C.; Shan, Y.; Feng, B.; Liu, W. Instances as queries. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6910–6919. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference On Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Song, F.; Zheng, C.; Yan, W.; Ye, W.L.; Zhang, Y.; Wang, Y.; Tittel, F.K. Performance enhancement of methane detection using a novel self-adaptive mid-infrared absorption spectroscopy technique. IEEE Photonics J. 2018, 10, 6804512. [Google Scholar] [CrossRef]
- CVHub. Advanced Auto Labeling Solution with Added Features. 2023. Available online: https://github.com/CVHub520/X-AnyLabeling (accessed on 24 March 2024).
- Chen, C.; Liu, M.Y.; Tuzel, O.; Xiao, J. R-CNN for small object detection. In Proceedings of the Computer Vision—ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; Revised Selected Papers, Part V 13. Springer: Cham, Switzerland, 2017; pp. 214–230. [Google Scholar]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
- Shao, L.; Zhu, F.; Li, X. Transfer learning for visual categorization: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1019–1034. [Google Scholar] [CrossRef]
Performance Metrics | Parameters |
---|---|
Array format | 320 × 256 |
Infrared detector type | Cooled infrared detector |
Image size | 30 μm |
NETD | <20 mK |
Spectral range | 3.2–3.4 μm |
Focal length | 100 mm |
Frame per second | 30 fps |
Object Statistics | Number of Objects |
---|---|
Small object | 2711 |
Normal object | 4476 |
Total objects | 7187 |
Hyperparameter Options | Parameters |
---|---|
Imgsz | 640 |
Batch_size | 16 |
Epochs | 100 |
Optimizer | SGD |
Initial Learning Rate | 0.01 |
Learning Rate Float | 0.01 |
Momentum | 0.937 |
Optimized Method | Precision | mAP50 | mAP50:95 |
---|---|---|---|
YOLOv8-seg | 91.4 | 95.3 | 45.7 |
+GAM_All | 90.8 | 94.2 | 44.5 |
+GAM_Backbone | 90.4 | 94.7 | 44.6 |
+GAM_Neck | 91.5 | 95.4 | 46.1 |
Optimized Method | GAM | Small Target Detection Layer | Transfer Learning | Precision | mAP50 | mAP50:95 |
---|---|---|---|---|---|---|
YOLOv8-seg | 91.4 | 95.3 | 45.7 | |||
YOLOv8-seg-I | ✓ | 91.5 | 95.4 | 46.1 | ||
YOLOv8-seg-II | ✓ | 92.7 | 95.8 | 46.2 | ||
YOLOv8-seg-III | ✓ | 93.5 | 96.0 | 46.2 | ||
YOLOv8-seg-IV | ✓ | ✓ | 91.8 | 95.3 | 46.6 | |
YOLOv8-seg-V | ✓ | ✓ | 92.2 | 96.0 | 46.4 | |
YOLOv8-seg-VI | ✓ | ✓ | 93.6 | 95.1 | 45.4 | |
YOLOv8-seg-VII | ✓ | ✓ | ✓ | 92.3 | 96.1 | 47.6 |
Model | mAP50_bbox | mAP50:95_bbox | mAP50_mask | mAP50:95_mask |
---|---|---|---|---|
YOLOv8-seg | 96.7 | 58.2 | 95.3 | 45.7 |
Mask R-CNN | 89.4 | 46.2 | 84.7 | 34.1 |
YOLACT | 94.8 | 53.0 | 92.0 | 39.2 |
SOLO | - | - | 86.4 | 33.3 |
SOLOv2 | - | - | 90.5 | 37.6 |
QueryInst | 90.4 | 47.1 | 83.8 | 33.0 |
MWIRGas-YOLO | 97.3 | 59.9 | 96.1 | 47.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Wang, X.; Sun, Q.; Dong, K. MWIRGas-YOLO: Gas Leakage Detection Based on Mid-Wave Infrared Imaging. Sensors 2024, 24, 4345. https://doi.org/10.3390/s24134345
Xu S, Wang X, Sun Q, Dong K. MWIRGas-YOLO: Gas Leakage Detection Based on Mid-Wave Infrared Imaging. Sensors. 2024; 24(13):4345. https://doi.org/10.3390/s24134345
Chicago/Turabian StyleXu, Shiwei, Xia Wang, Qiyang Sun, and Kangjun Dong. 2024. "MWIRGas-YOLO: Gas Leakage Detection Based on Mid-Wave Infrared Imaging" Sensors 24, no. 13: 4345. https://doi.org/10.3390/s24134345