A Novel Single-Sample Retinal Vessel Segmentation Method Based on Grey Relational Analysis
<p>Structure of the retina.</p> "> Figure 2
<p>Block diagram of the suggested approach.</p> "> Figure 3
<p>Middle image of fundus image preprocessing: (<b>a</b>) the original image, (<b>b</b>) the green channel image, (<b>c</b>) the image after NADF-GRA, (<b>d</b>) the image after CLAHE, (<b>e</b>) the image after Frangi enhancement.</p> "> Figure 4
<p>Images from the DRIVE dataset before and after post-processing: (<b>a</b>) and (<b>c</b>) are the images before post-processing. (<b>b</b>) and (<b>d</b>) are the images after post-processing.</p> "> Figure 5
<p>Threshold variation map of NADF-GRA.</p> "> Figure 6
<p>Threshold variation curve of TS-GRA.</p> "> Figure 7
<p>Segmentation results of the DRIVE, STARE and HRF datasets.</p> "> Figure 8
<p>Magnification and comparison of segmentation results of different algorithms on DRIVE: (<b>a</b>) the original image, (<b>b</b>) the ground truth, (<b>c</b>) segmentation results under the traditional GLCM model, (<b>d</b>) segmentation results under the novel GLCAA model.</p> "> Figure 9
<p>Magnification and comparison of segmentation results of different algorithms on STARE: (<b>a</b>) the original image, (<b>b</b>) the ground truth, (<b>c</b>) segmentation results under the traditional GLCM model, (<b>d</b>) segmentation results under the novel GLCAA model.</p> ">
Abstract
:1. Introduction
- (1)
- In order to effectively reduce noise interference and enhance the pre-processing stage to achieve accurate retinal blood vessel segmentation, a noise-adaptive discrimination filtering algorithm based on grey relational analysis is proposed. It adaptively adjusts the filtering intensity through the gray correlation degree to distinguish between noise and real features, ensuring that the key vascular structure is preserved without being obscured by noise. This approach retains more critical details while achieving improved filtering effects.
- (2)
- A threshold segmentation model based on grey relational analysis is proposed to accurately localize the direction of vessels. This model can not only detect retinal blood vessels effectively but also reduce the interference of abnormal retinal noise signals to a certain extent. The study discusses in depth the theoretical underpinning of the model, including how grey correlation analysis quantifies the differences between blood vessels and the background, and provides an evaluation of the model’s performance in actual image segmentation.
2. Proposed Method
2.1. Noise-Adaptive Discrimination Filtering Algorithm Based on Grey Relational Analysis (NADF-GRA)
2.2. Threshold Segmentation Model Based on Grey Relational Analysis (TS-GRA)
2.3. Contrast Adaptive Histogram Equalization (CLAHE)
2.4. Frangi Filtering
2.5. Post-Processing
3. Experimental Results and Discussion
3.1. Dataset Introduction
3.2. Evaluation Indicators
3.3. Visual Results
3.4. Comparative Analysis of Objective Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Tang, P.; Liang, Q.; Yan, X.; Zhang, D.; Gianmarc, C.; Sun, W. Multi-proportion channel ensemble model for retinal vessel segmentation. Comput. Biol. Med. 2019, 111, 103352. [Google Scholar] [CrossRef] [PubMed]
- Guo, S. Fundus image segmentation via hierarchical feature learning. Comput. Biol. Med. 2021, 138, 104928. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Sun, M.; Liu, Y.; Wu, J. CSAUNet: A cascade self-attention u-shaped network for precise fundus vessel segmentation. Biomed. Signal Proces. 2022, 75, 103613. [Google Scholar] [CrossRef]
- Xie, J.; Yi, Q.; Wu, Y.; Zheng, Y.; Liu, Y.; Macerollo, A.; Fu, H.; Xu, Y.; Zhang, J.; Behera, A.; et al. Deep segmentation of OCTA for evaluation and association of changes of retinal microvasculature with Alzheimer’s disease and mild cognitive impairment. Br. J. Ophthalmol. 2023, 108, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, H.; Zhao, Y.; Zhao, Y.; Gao, D.; Hamill, B.; Patri, G.; Peto, T.; Madhusudhan, S.; Zheng, Y. Dual Consistency Enabled Weakly and Semi-Supervised Optic Disc and Cup Segmentation with Dual Adaptive Graph Convolutional Networks. IEEE Trans. Med. Imaging 2023, 42, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Shen, T.; Zhu, X.; Liu, Y.; Behera, A.; Zhang, D.; Chen, B.; Liu, J.; Zhang, J.; Zhao, Y. Retinal Structure Detection in OCTA Image via Voting-based Multi-task Learning. IEEE Trans. Med. Imaging 2022, 41, 3969–3980. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zhang, H.; Wu, Y.; Song, R.; Ma, Y.; Mou, L.; Liu, J.; Xie, Y.; Ma, M.; Zhao, Y. 3D Vessel-like Structure Segmentation in Medical Images by an Edge-Reinforced Network. Med. Image Anal. 2022, 82, 102581. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zheng, Y.; Liu, Y.; Zhao, Y.; Luo, L.; Yang, S.; Na, T.; Wang, Y.; Liu, J. Automatic 2D/3D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter. IEEE Trans. Med. Imaging 2018, 37, 438–450. [Google Scholar] [CrossRef]
- Ma, Y.; Hao, H.; Xie, J.; Fu, H.; Zhang, J.; Yang, J.; Wang, Z.; Liu, J.; Zheng, Y.; Zhao, Y. ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. IEEE Trans. Med. Imaging 2021, 40, 928–939. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Zhang, L.; Karray, F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 2010, 40, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Alles, R.M.; Burgeth, B.; Weickert, J. Fast retinal vessel analysis. J. Real-Time Image Process. 2016, 11, 413–422. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Wang, X.; Frank, Y.S. Retinal vessels segmentation based on level set and region growing. Pattern Recogn. 2014, 47, 2437–2446. [Google Scholar] [CrossRef]
- Deng, J.L. Basis of Grey Theory; Huazhong University of Science and Technology Press: Wuhan, China, 2002; pp. 135–141. [Google Scholar]
- Ma, M.; Fan, Y.; Xie, S.; Hao, C.; Li, X. A Novel Algorithm of Image Edge Detection Based on Gray System Theory. J. Image Graph. 2003, 8, 1136–1139. [Google Scholar]
- Zhen, Z.; Gu, Z.; Liu, Y. Image segmentation based on genetic algorithms and grey relational analysis. J. Grey Syst. 2016, 28, 45–51. [Google Scholar]
- Li, H.; Han, Y.; Guo, J. Image edge detection based on grey relation of simplified B-mode. Infrared Technol. 2017, 2, 163–167. [Google Scholar]
- Nath, M.K.; Dandapat, S.; Barna, C. Automatic detection of blood vessels and evaluation of retinal disorder from color fundus images. J. Intell. Fuzzy Syst. 2020, 38, 6019–6030. [Google Scholar] [CrossRef]
- Orujov, F.; Maskeliunas, R.; Damasevicius, R.; Wei, W. Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Appl. Soft Comput. 2020, 94, 106452. [Google Scholar] [CrossRef]
- Jayachandran, A.; Kumar, S.R.; Perumal, T.S.R. Multi-dimensional cascades neural network models for the segmentation of retinal vessels in colour fundus images. Multimed. Tools Appl. 2023, 82, 42927–42943. [Google Scholar] [CrossRef]
- Dong, F.; Wu, D.; Guo, C.; Zhang, S.; Yang, B.; Gong, X. CRAUNet: A cascaded residual attention U-Net for retinal vessel segmentation. Comput. Biol. Med. 2022, 147, 105651. [Google Scholar] [CrossRef]
- Qu, Z.; Zhuo, L.; Cao, J.; Li, X.; Yin, H.; Wang, Z. TP-Net: Two-Path Network for Retinal Vessel Segmentation. IEEE J. Biomed. Health Inf. 2023, 27, 1979–1990. [Google Scholar] [CrossRef] [PubMed]
- Odstrcilik, J.; Kolar, R.; Budai, A.; Hornegger, J.; Jan, J.; Gazarek, J.; Kubena, T.; Cernosek, P.; Svoboda, O.; Angelopoulou, E. Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Process. 2013, 7, 373–383. [Google Scholar] [CrossRef]
- Roy, S.; Mitra, A.; Roy, S.; Setua, S.K. Blood vessel segmentation of retinal image using Clifford matched filter and Clifford convolution. Multimed. Tools Appl. 2019, 78, 34839–34865. [Google Scholar] [CrossRef]
- Yang, J.; Huang, M.; Fu, J.; Lou, C.; Feng, C. Frangi based multi-scale level sets for retinal vascular segmentation. Comput. Methods Programs Biomed. 2020, 197, 105752. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Li, Y.; Wang, J.; Chen, W. Blood vessel segmentation of fundus retinal images based on improved Frangi and mathematical morphology. Comput. Math. Methods Med. 2021, 2021, 4761517. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Feng, C.; Li, W.; Zhao, D. Vessel enhancement using multi-scale space-intensity domain fusion adaptive filtering. Biomed. Signal Process. Control 2021, 69, 102799. [Google Scholar] [CrossRef]
- Mahapatra, S.; Agrawal, S.; Mishro, P.K.; Pachori, R.B. A novel framework for retinal vessel segmentation using optimal improved frangi filter and adaptive weighted spatial FCM. Comput. Biol. Med. 2022, 147, 105770. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Pandey, R.K.; Pachori, R.B. A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed. Signal Process. Control 2020, 59, 101883. [Google Scholar] [CrossRef]
- Vega, R.; Sanchez-Ante, G.; Falcon-Morales, L.E.; Sossa, H.; Guevara, E. Retinal vessel extraction using lattice neural networks with dendritic processing. Comput. Biol. Med. 2015, 58, 20–30. [Google Scholar] [CrossRef]
- Lazar, I.; Hajdu, A. Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput. Biol. Med. 2015, 66, 209–221. [Google Scholar] [CrossRef]
- Aguirre-Ramos, H.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Ruiz-Pinales, J.; Ledesma, S. Blood vessel segmentation in retinal fundus images using Gabor filters, fractional derivatives, and Expectation Maximization. Appl. Math. Comput. 2018, 339, 568–587. [Google Scholar] [CrossRef]
- Annunziata, R.; Garzelli, A.; Ballerini, L.; Mecocci, A.; Trucco, E. Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J. Biomed. Health Inform. 2016, 20, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
Image | DRIVE | |||||
---|---|---|---|---|---|---|
Acc | Se | Sp | Pr | F1-Score | JC | |
1 | 0.9602 | 0.7975 | 0.9762 | 0.7661 | 0.7815 | 0.6414 |
2 | 0.9594 | 0.7793 | 0.9794 | 0.8122 | 0.7954 | 0.6604 |
3 | 0.9533 | 0.6288 | 0.9892 | 0.866 | 0.7386 | 0.5730 |
4 | 0.9617 | 0.6914 | 0.9891 | 0.8654 | 0.7687 | 0.6243 |
5 | 0.9582 | 0.6267 | 0.9925 | 0.8961 | 0.7475 | 0.5842 |
6 | 0.9545 | 0.5924 | 0.9936 | 0.9084 | 0.7571 | 0.5590 |
7 | 0.9516 | 0.6481 | 0.9821 | 0.7845 | 0.7398 | 0.5501 |
8 | 0.9524 | 0.5656 | 0.9888 | 0.8261 | 0.6715 | 0.5054 |
9 | 0.9693 | 0.5914 | 0.9895 | 0.8329 | 0.6917 | 0.5287 |
10 | 0.9627 | 0.6600 | 0.9898 | 0.8533 | 0.7543 | 0.5927 |
11 | 0.9509 | 0.7143 | 0.9742 | 0.7311 | 0.7596 | 0.5657 |
12 | 0.9699 | 0.6945 | 0.9847 | 0.8104 | 0.7480 | 0.5975 |
13 | 0.9551 | 0.6584 | 0.9872 | 0.8482 | 0.7493 | 0.5890 |
14 | 0.9624 | 0.7489 | 0.9811 | 0.7774 | 0.7729 | 0.6167 |
15 | 0.9547 | 0.6947 | 0.9747 | 0.6795 | 0.7170 | 0.5233 |
16 | 0.9641 | 0.7086 | 0.9841 | 0.8155 | 0.7583 | 0.6107 |
17 | 0.9609 | 0.6528 | 0.9893 | 0.8495 | 0.7483 | 0.5852 |
18 | 0.9638 | 0.7622 | 0.9811 | 0.7763 | 0.7792 | 0.6249 |
19 | 0.9723 | 0.7898 | 0.9888 | 0.8640 | 0.8253 | 0.7025 |
20 | 0.9676 | 0.7200 | 0.9873 | 0.8176 | 0.7657 | 0.6204 |
Average | 0.9603 | 0.6863 | 0.9851 | 0.8190 | 0.7535 | 0.5928 |
Image | STARE | |||||
---|---|---|---|---|---|---|
Acc | Se | Sp | Pr | F1-Score | JC | |
1 | 0.9338 | 0.6070 | 0.9622 | 0.6578 | 0.6981 | 0.5266 |
2 | 0.9328 | 0.4602 | 0.9629 | 0.6172 | 0.6663 | 0.5394 |
3 | 0.9243 | 0.7826 | 0.9449 | 0.627 | 0.6922 | 0.5091 |
4 | 0.9444 | 0.4150 | 0.9980 | 0.9176 | 0.6326 | 0.526 |
5 | 0.9593 | 0.7758 | 0.9787 | 0.6237 | 0.6926 | 0.5297 |
6 | 0.9453 | 0.4931 | 0.9821 | 0.6859 | 0.6541 | 0.5934 |
7 | 0.9481 | 0.6948 | 0.9620 | 0.7282 | 0.7391 | 0.589 |
8 | 0.9521 | 0.6011 | 0.9735 | 0.6961 | 0.7377 | 0.5705 |
9 | 0.9595 | 0.6815 | 0.9715 | 0.7619 | 0.6912 | 0.5219 |
10 | 0.9584 | 0.5784 | 0.9793 | 0.7645 | 0.6545 | 0.5336 |
11 | 0.9591 | 0.8693 | 0.9820 | 0.7294 | 0.7971 | 0.547 |
12 | 0.9712 | 0.8789 | 0.9721 | 0.6686 | 0.7538 | 0.6048 |
13 | 0.9495 | 0.7987 | 0.9859 | 0.6792 | 0.7401 | 0.5968 |
14 | 0.9597 | 0.7791 | 0.9764 | 0.6993 | 0.7534 | 0.5307 |
15 | 0.9692 | 0.7874 | 0.9823 | 0.7887 | 0.7639 | 0.618 |
16 | 0.9591 | 0.7057 | 0.9935 | 0.8522 | 0.6614 | 0.5902 |
17 | 0.9530 | 0.6951 | 0.9857 | 0.7529 | 0.7975 | 0.5717 |
18 | 0.9761 | 0.6270 | 0.9947 | 0.8588 | 0.7272 | 0.5713 |
19 | 0.9765 | 0.6082 | 0.9930 | 0.7946 | 0.7016 | 0.5403 |
20 | 0.9612 | 0.5709 | 0.9891 | 0.7706 | 0.6632 | 0.4961 |
Average | 0.9546 | 0.6705 | 0.9785 | 0.7337 | 0.7109 | 0.5553 |
Image | HRF | ||||||||
---|---|---|---|---|---|---|---|---|---|
H (%) | DR (%) | G (%) | |||||||
Pr | F1-Score | JC | Pr | F1-Score | JC | Pr | F1-Score | JC | |
1 | 81.28 | 81.57 | 69.03 | 76.23 | 72.46 | 60.56 | 72.63 | 72.90 | 54.32 |
2 | 79.50 | 80.29 | 68.85 | 76.59 | 69.07 | 58.93 | 72.17 | 71.75 | 52.12 |
3 | 78.99 | 79.92 | 49.89 | 69.22 | 66.23 | 53.06 | 73.69 | 70.90 | 50.89 |
4 | 80.99 | 81.02 | 59.89 | 76.88 | 73.74 | 52.69 | 71.61 | 70.91 | 51.41 |
5 | 82.77 | 75.97 | 63.49 | 76.84 | 74.54 | 57.41 | 72.74 | 69.89 | 51.58 |
6 | 79.89 | 76.20 | 65.48 | 76.19 | 69.49 | 58.44 | 70.40 | 69.63 | 52.96 |
7 | 82.96 | 82.80 | 69.93 | 76.15 | 75.78 | 59.13 | 72.11 | 70.88 | 50.12 |
8 | 81.64 | 78.26 | 67.16 | 77.82 | 78.45 | 56.33 | 70.88 | 70.79 | 50.58 |
9 | 80.67 | 76.79 | 69.76 | 79.16 | 69.89 | 60.75 | 69.37 | 69.88 | 49.47 |
10 | 78.91 | 80.21 | 68.23 | 78.61 | 64.36 | 57.55 | 67.81 | 69.10 | 50.25 |
11 | 80.65 | 78.31 | 62.60 | 77.13 | 79.81 | 59.86 | 70.52 | 71.35 | 52.77 |
12 | 83.70 | 78.71 | 65.55 | 75.06 | 78.85 | 58.08 | 68.93 | 71.83 | 50.96 |
13 | 79.93 | 76.15 | 59.85 | 79.29 | 76.30 | 60.71 | 69.03 | 70.85 | 50.98 |
14 | 78.18 | 78.68 | 64.94 | 76.71 | 75.44 | 58.29 | 71.68 | 70.67 | 48.52 |
15 | 79.35 | 78.44 | 68.54 | 74.24 | 72.51 | 55.42 | 69.56 | 69.72 | 50.63 |
avg | 80.63 | 78.89 | 64.88 | 76.41 | 73.12 | 57.81 | 70.88 | 70.74 | 51.17 |
Methods | Acc | Se | Sp | |
---|---|---|---|---|
Supervised methods | Tang et al. [2] | 0.9574 | 0.8083 | 0.9796 |
Guo S [3] | 0.9575 | 0.7993 | 0.9806 | |
Dong et al. [21] | 0.9586 | 0.7954 | — | |
Qu et al. [22] | 0.9629 | 0.8749 | 0.9758 | |
Jayachandran [20] | 0.9587 | 0.8072 | 0.9803 | |
Zhao et al. [9] | 0.9580 | 0.7740 | 0.9790 | |
Unsupervised methods | Odstrcilik et al. [23] | 0.9340 | 0.7060 | 0.9693 |
Roy et al. [24] | 0.9295 | 0.4392 | 0.9622 | |
Yang et al. [25] | 0.9522 | 0.7181 | 0.9747 | |
Nath et al. [18] | 0.9493 | 0.4304 | 0.9024 | |
Tian et al. [26] | 0.9554 | 0.6942 | 0.9802 | |
Huang et al. [27] | 0.9535 | 0.6650 | 0.9812 | |
Mahapatra et al. [28] | 0.9605 | 0.7020 | 0.9844 | |
Shukla et al. [29] | 0.9476 | 0.7015 | 0.9836 | |
Traditional GLCM model | 0.9445 | 0.5936 | 0.9845 | |
Proposed method | 0.9603 | 0.6863 | 0.9851 |
Methods | Acc | Se | Sp | |
---|---|---|---|---|
Supervised methods | Vega et al. [30] | 0.9189 | 0.8179 | 0.9269 |
Huang et al. [4] | 0.9728 | 0.8304 | 0.9862 | |
Qu et al. [22] | 0.9724 | 0.8852 | 0.9820 | |
Jayachandran [20] | 0.9694 | 0.9836 | 0.8213 | |
Zhao et al. [9] | 0.9570 | 0.7880 | 0.9760 | |
Unsupervised methods | Lazar and Hajdu [31] | 0.9492 | 0.7248 | 0.9751 |
Ramos et al. [32] | 0.9231 | 0.7116 | 0.9454 | |
Roy et al. [24] | 0.9488 | 0.4317 | 0.9718 | |
Orujov et al. [19] | 0.8650 | 0.8342 | 0.8806 | |
Yang et al. [25] | 0.9513 | 0.6713 | 0.9731 | |
Tian et al. [26] | 0.9492 | 0.7019 | 0.9771 | |
Huang et al. [27] | 0.9537 | 0.7273 | 0.9622 | |
Mahapatra et al. [28] | 0.9601 | 0.6846 | 0.9802 | |
Traditional GLCM model | 0.9456 | 0.5957 | 0.9766 | |
Proposed method | 0.9546 | 0.6705 | 0.9785 |
Methods | Database | Pr | F1-Score | JC |
---|---|---|---|---|
Vega et al. [30] | DRIVE | 64.02 | 68.84 | - |
Nath et al. [18] | DRIVE | 45.11 | 44.05 | 28.37 |
Orujov et al. [19] | DRIVE | 34.02 | 38.00 | 55.00 |
STARE | 70.15 | 53.35 | 36.17 | |
Annunziata et al. [33] | STARE | 83.31 | 76.82 | - |
Ramos et al. [32] | DRIVE | 68.80 | 73.35 | - |
Shukla et al. [29] | DRIVE | 51.94 | 59.69 | - |
STARE | 46.38 | 55.87 | - | |
Mahapatra et al. [28] | DRIVE | 81.24 | 75.31 | 58.97 |
STARE | 74.40 | 71.29 | 55.66 | |
HRF(H) | 80.62 | 78.78 | 64.51 | |
HRF(DR) | 77.32 | 73.86 | 58.61 | |
HRF(G) | 70.28 | 70.70 | 51.14 | |
Traditional GLCM model | DRIVE | 80.49 | 74.01 | 58.32 |
STARE | 72.46 | 70.53 | 54.27 | |
HRF(H) | 79.91 | 78.10 | 63.58 | |
HRF(DR) | 75.69 | 72.27 | 56.79 | |
HRF(G) | 70.02 | 69.80 | 50.52 | |
Proposed method | DRIVE | 81.90 | 75.35 | 59.28 |
STARE | 73.37 | 71.09 | 55.53 | |
HRF(H) | 80.63 | 78.89 | 64.88 | |
HRF(DR) | 76.41 | 73.12 | 57.81 | |
HRF(G) | 70.88 | 70.74 | 51.17 |
Method | Filtering Method | Segmentation Method | DRIVE | STARE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GLCM Filtering | NADF-GRA | GLCM Segmentation | TS-GRA | Acc | Se | Sp | Acc | Se | Sp | |
Method 1 | √ | – | √ | – | 0.9445 | 0.5936 | 0.9845 | 0.9456 | 0.5957 | 0.9766 |
Method 2 | √ | – | – | √ | 0.9484 | 0.5952 | 0.9844 | 0.9504 | 0.6499 | 0.9764 |
Method 3 | – | √ | √ | – | 0.9569 | 0.6019 | 0.9849 | 0.9528 | 0.6681 | 0.9780 |
Method 4 | – | √ | – | √ | 0.9603 | 0.6863 | 0.9851 | 0.9546 | 0.6705 | 0.9785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, H. A Novel Single-Sample Retinal Vessel Segmentation Method Based on Grey Relational Analysis. Sensors 2024, 24, 4326. https://doi.org/10.3390/s24134326
Wang Y, Li H. A Novel Single-Sample Retinal Vessel Segmentation Method Based on Grey Relational Analysis. Sensors. 2024; 24(13):4326. https://doi.org/10.3390/s24134326
Chicago/Turabian StyleWang, Yating, and Hongjun Li. 2024. "A Novel Single-Sample Retinal Vessel Segmentation Method Based on Grey Relational Analysis" Sensors 24, no. 13: 4326. https://doi.org/10.3390/s24134326