Evaluating Thermal Infrared Drone Flight Parameters on Spider Monkey Detection in Tropical Forests
<p>Map of Los Arboles Tulum, Tulum, Mexico, with 2 ha lots (white lines) showing the drone take-off and landing points (white dots with a black center) and flight routes (yellow lines) over five spider monkey sleeping sites (red squares) where we tested the effect of three flight parameters on spider monkey detectability.</p> "> Figure 2
<p>(<b>a</b>) Drone at height H with camera pointing directly down (−90°). The value <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mn>90</mn> </mrow> </msub> </mrow> </semantics></math> is the distance on the ground subtended by a camera with an angular field of view <span class="html-italic">θ</span>. (<b>b</b>) Side-on view of drone at height H facing toward the right, with the center of the camera field of view pointing an angle of <span class="html-italic">ϕ</span>. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>N</mi> </mrow> </msub> </mrow> </semantics></math> is the distance on the ground from directly below the drone to the nearest point of the drone’s field of view. <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>D</mi> </mrow> <mrow> <mi>N</mi> </mrow> <mrow> <mi>G</mi> </mrow> </msubsup> </mrow> </semantics></math> is the distance from the drone to this point, with G being ground. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>M</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math> are the distances on the ground from directly below the drone to the middle (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>M</mi> </mrow> </msub> </mrow> </semantics></math>) and farthest (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math>) point on the drone’s field of view. The angle <span class="html-italic">χ</span> is an arbitrary angle between zero and <span class="html-italic">θ</span> to generalize the mathematical expressions. (<b>c</b>) Reprojected view of (<b>b</b>), rotated to show the width (W) of the field of view on the ground at the point nearest to the drone, <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>D</mi> </mrow> <mrow> <mi>N</mi> </mrow> <mrow> <mi>W</mi> </mrow> </msubsup> </mrow> </semantics></math>.</p> "> Figure 3
<p>Examples of (<b>a</b>) high thermal contrast zones and (<b>b</b>) low thermal contrast zones, and how the spider monkeys appear in the videos (inside the white circle).</p> "> Figure 4
<p>Spider monkeys (within white circles) in TIR drone footage under different combinations of flight height and camera angle: (<b>a</b>) 50 m and −90°, (<b>b</b>) 40 m and −90°, (<b>c</b>) 50 m and −45°, and (<b>d</b>) 40 m and −45°.</p> "> Figure 5
<p>Level of agreement between coders for different flight parameter combinations for high (blue points) and low (orange point) thermal contrast zones. Gray points indicate that both contrast zones had the same level of agreement. The categories of level of agreement between coders on the <span class="html-italic">y</span>-axis are as follows: SL (slight), F (fair), M (moderate), SU (substantial), AP (almost perfect). The values of the flight parameter combinations on the <span class="html-italic">x</span>-axis are presented in the following order: flight speed (m/s), flight height (m a.g.l.), and camera angle (°).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection Flights
2.3. Spider Monkey Detection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowak, M.M.; Dziób, K.; Bogawski, P. Unmanned Aerial Vehicles (UAVs) in environmental biology: A review. Eur. J. Ecol. 2019, 4, 56–74. [Google Scholar] [CrossRef]
- Sivakumar, M.; Naga Malleswari, T.Y.J. A literature survey of unmanned aerial vehicle usage for civil applications. J. Aerosp. Technol. Manag. 2021, 13, e4021. [Google Scholar] [CrossRef]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Chabot, D.; Bird, D.M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef]
- Koh, L.P.; Wich, S.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 2012, 5, 121–132. [Google Scholar] [CrossRef]
- Garrard, G.E.; Mccarthy, M.A.; Williams, N.S.G.; Bekessy, S.A.; Wintle, B.A. A general model of detectability using species traits. Methods Ecol. Evol. 2012, 4, 45–52. [Google Scholar] [CrossRef]
- McCarthy, M.A.; Moore, J.L.; Morris, W.K.; Parris, K.M.; Garrard, G.E.; Vesk, P.A.; Rumpff, L.; Giljohann, K.M.; Camac, J.S.; Bau, S.S.; et al. The influence of abundance on detectability. Oikos 2012, 122, 717–726. [Google Scholar] [CrossRef]
- Brack, I.V.; Kindel, A.; Oliveira, L.F.B. Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 2018, 9, 1864–1873. [Google Scholar] [CrossRef]
- Rigby, E.A.; Johnson, D.H. Factors affecting detection probability, effective area surveyed, and species misidentification in grassland bird point counts. Gerontologist 2019, 59, duz030. [Google Scholar] [CrossRef]
- Willson, J.D.; Winne, C.T.; Todd, B.D. Ecological and methodological factors affecting detectability and population estimation in elusive species. J. Wildl. Manag. 2011, 75, 36–45. [Google Scholar] [CrossRef]
- Brack, I.V.; Kindel, A.; de Oliveira, L.F.B.; Lahoz-Monfort, J.J. Optimally designing drone-based surveys for wildlife abundance estimation with N-mixture models. Methods Ecol. Evol. 2023, 14, 898–910. [Google Scholar] [CrossRef]
- Lahoz-Monfort, J.J.; Magrath, M.J.L. A comprehensive overview of technologies for species and habitat monitoring and conservation. Bioscience 2021, 71, 1038–1062. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Edwards, A.C.; Garnett, S.T.; Whiteside, T.G.; Weber, P. Drones and sound recorders increase the number of bird species identified: A combined surveys approach. Ecol. Inform. 2023, 74, 101988. [Google Scholar] [CrossRef]
- Bonnin, N.; Van Andel, A.; Kerby, J.; Piel, A.; Pintea, L.; Wich, S.; Bonnin, N.; Van Andel, A.C.; Kerby, J.T.; Piel, A.K.; et al. Assessment of chimpanzee nest detectability in drone-acquired images. Drones 2018, 2, 17. [Google Scholar] [CrossRef]
- Milne, S.; Martin, J.G.A.; Reynolds, G.; Vairappan, C.S.; Slade, E.M.; Brodie, J.F.; Wich, S.A.; Williamson, N.; Burslem, D.F.R.P. Drivers of Bornean orangutan distribution across a multiple-use tropical landscape. Remote Sens. 2021, 13, 458. [Google Scholar] [CrossRef]
- Bogolin, A.P.; Davis, D.R.; Kline, R.J.; Rahman, A.F. A drone-based survey for large, basking freshwater turtle species. PLoS ONE 2021, 16, e0257720. [Google Scholar] [CrossRef]
- Hensel, E.; Wenclawski, S.; Layman, C.A.; Hensel, E.; Wenclawski, S.; Layman, C.A. Using a small, consumer-grade drone to identify and count marine megafauna in shallow habitats. Lat. Am. J. Aquat. Res. 2018, 46, 1025–1033. [Google Scholar] [CrossRef]
- Rowley, O.C.; Courtney, R.L.; Browning, S.A.; Seymour, J.E. Bay watch: Using unmanned aerial vehicles (UAV’s) to survey the box jellyfish Chironex fleckeri. PLoS ONE 2020, 15, e0241410. [Google Scholar] [CrossRef]
- Seymour, A.C.; Dale, J.; Hammill, M.; Halpin, P.N.; Johnston, D.W. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci. Rep. 2017, 7, 45127. [Google Scholar] [CrossRef]
- Spaan, D.; Di Fiore, A.; Rangel-Rivera, C.E.; Hutschenreiter, A.; Wich, S.; Aureli, F. Detecting spider monkeys from the sky using a high-definition RGB camera: A rapid-assessment survey method? Biodivers. Conserv. 2022, 31, 479–496. [Google Scholar] [CrossRef]
- Kays, R.; Sheppard, J.; Mclean, K.; Welch, C.; Paunescu, C.; Wang, V.; Kravit, G.; Crofoot, M. Hot monkey, cold reality: Surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. Int. J. Remote Sens. 2018, 40, 407–419. [Google Scholar] [CrossRef]
- Lethbridge, M.; Stead, M.; Wells, C.; Lethbridge, M.; Stead, M.; Wells, C. Estimating kangaroo density by aerial survey: A comparison of thermal cameras with human observers. Wildl. Res. 2019, 46, 639–648. [Google Scholar] [CrossRef]
- Spaan, D.; Burke, C.; McAree, O.; Aureli, F.; Rangel-Rivera, C.E.; Hutschenreiter, A.; Longmore, S.N.; McWhirter, P.R.; Wich, S.A. Thermal infrared imaging from drones offers a major advance for spider monkey surveys. Drones 2019, 3, 34. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Turvey, S.T.; Sun, Z.; Tan, Z.; Yang, Q.; Long, W.; Wu, X.; Yang, D. Thermal infrared imaging from drones can detect individuals and nocturnal behavior of the world’s rarest primate. Glob. Ecol. Conserv. 2020, 23, e01101. [Google Scholar] [CrossRef]
- Whitworth, A.; Pinto, C.; Ortiz, J.; Flatt, E.; Silman, M. Flight speed and time of day heavily influence rainforest canopy wildlife counts from drone-mounted thermal camera surveys. Biodivers. Conserv. 2022, 31, 3179–3195. [Google Scholar] [CrossRef]
- McCarthy, E.D.; Martin, J.M.; Boer, M.M.; Welbergen, J.A. Drone-based thermal remote sensing provides an effective new tool for monitoring the abundance of roosting fruit bats. Remote Sens. Ecol. Conserv. 2021, 7, 461–474. [Google Scholar] [CrossRef]
- Corcoran, E.; Denman, S.; Hanger, J.; Wilson, B.; Hamilton, G. Automated detection of koalas using low-level aerial surveillance and machine learning. Sci. Rep. 2019, 9, 3208. [Google Scholar] [CrossRef] [PubMed]
- Witt, R.R.; Beranek, C.T.; Howell, L.G.; Ryan, S.A.; Clulow, J.; Jordan, N.R.; Denholm, B.; Roff, A. Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLoS ONE 2020, 15, e0242204. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.; Rashman, M.F.; Longmore, S.N.; Mcaree, O.; Glover-kapfer, P.; Ancrenaz, M.; Wich, S.A. Successful observation of orangutans in the wild with thermal-equipped drones. J. Unmanned Veh. Syst. 2019, 7, 235–257. [Google Scholar] [CrossRef]
- Rahman, D.A.; Setiawan, Y.; Wijayanto, A.K.; Rahman, A.A.A.F.; Martiyani, T.R. An experimental approach to exploring the feasibility of unmanned aerial vehicle and thermal imaging in terrestrial and arboreal mammals research. E3S Web Conf. 2020, 211, 02010. [Google Scholar] [CrossRef]
- de Melo, F.R. Drones for conservation: New techniques to monitor muriquis. Oryx 2021, 55, 171. [Google Scholar] [CrossRef]
- Vinson, S.G.; Johnson, A.P.; Mikac, K.M. Thermal cameras as a survey method for Australian arboreal mammals: A focus on the greater glider. Aust. Mammal. 2020, 42, 367–374. [Google Scholar] [CrossRef]
- Zhang, H.; Turvey, S.T.; Pandey, S.P.; Song, X.; Sun, Z.; Wang, N. Commercial drones can provide accurate and effective monitoring of the world’s rarest primate. Remote Sens. Ecol. Conserv. 2023, 9, 775–786. [Google Scholar] [CrossRef]
- Pocknee, C.A.; Lahoz-Monfort, J.J.; Martin, R.W.; Wintle, B.A. Cost-effectiveness of thermal imaging for monitoring a cryptic arboreal mammal. Wildl. Res. 2021, 48, 625–634. [Google Scholar] [CrossRef]
- Doull, K.E.; Chalmers, C.; Fergus, P.; Longmore, S.; Piel, A.K.; Wich, S.A. An evaluation of the factors affecting ‘poacher’ detection with drones and the efficacy of machine-learning for detection. Sensors 2021, 21, 4074. [Google Scholar] [CrossRef]
- Mirka, B.; Stow, D.A.; Paulus, G.; Loerch, A.C.; Coulter, L.L.; An, L.; Lewison, R.L.; Pflüger, L.S. Evaluation of thermal infrared imaging from uninhabited aerial vehicles for arboreal wildlife surveillance. Environ. Monit. Assess. 2022, 194, 512. [Google Scholar] [CrossRef] [PubMed]
- Fadhil, M.; Hamoodi, M.N.; Ziboon, A.R.T. Mitigating urban heat island effects in urban environments: Strategies and tools. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012025. [Google Scholar] [CrossRef]
- Burke, C.; Rashman, M.; Wich, S.; Symons, A.; Theron, C.; Longmore, S. Optimising observing strategies for monitoring warm-blooded animal species using UAV-mounted thermal infrared cameras. Int. J. Remote Sens. 2019, 30, 439–467. [Google Scholar] [CrossRef]
- Brunton, E.A.; Leon, J.X.; Burnett, S.E. Evaluating the efficacy and optimal deployment of thermal infrared and true-colour imaging hen using drones for monitoring kangaroos. Drones 2020, 4, 20. [Google Scholar] [CrossRef]
- Inman, V.L.; Kingsford, R.T.; Chase, M.J.; Leggett, K.E.A. Drone-based effective counting and ageing of hippopotamus (Hippopotamus amphibius) in the Okavango Delta in Botswana. PLoS ONE 2019, 14, e0219652. [Google Scholar] [CrossRef]
- Povlsen, P.; Linder, A.C.; Larsen, H.L.; Durdevic, P.; Arroyo, D.O.; Bruhn, D.; Pertoldi, C.; Pagh, S. Using drones with thermal imaging to estimate population counts of European hare in denmark. Drones 2022, 7, 5. [Google Scholar] [CrossRef]
- Rahman, D.A.; Sitorus, A.B.Y.; Condro, A.A. From coastal to montane forest ecosystems, using drones for multi-species research in the tropics. Drones 2021, 6, 6. [Google Scholar] [CrossRef]
- Duffy, J.P.; Cunliffe, A.M.; DeBell, L.; Sandbrook, C.; Wich, S.A.; Shutler, J.D.; Myers-Smith, I.H.; Varela, M.R.; Anderson, K. Location, location, location: Considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 2018, 4, 7–19. [Google Scholar] [CrossRef]
- Beaver, J.T.; Baldwin, R.W.; Messinger, M.; Newbolt, C.H.; Ditchkoff, S.S.; Silman, M.R. Evaluating the use of drones equipped with thermal sensors as an effective method for estimating wildlife. Wildl. Soc. Bull. 2020, 44, 434–443. [Google Scholar] [CrossRef]
- Jones, L.R.; Elmore, J.A.; Krishnan, B.S.; Samiappan, S.; Evans, K.O.; Pfeiffer, M.B.; Blackwell, B.F.; Iglay, R.B. Controllable factors affecting accuracy and precision of human identification of animals from drone imagery. Ecosphere 2023, 14, e4657. [Google Scholar] [CrossRef]
- Dahlen, B.; Traeholt, C. Successful aerial survey using thermal camera to detect wild orangutans in a fragmented landscape. J. Indones. Nat. Hist. 2018, 6, 12–23. [Google Scholar]
- Gazagne, E.; Gray, R.J.; Ratajszczak, R.; Brotcorne, F.; Hambuckers, A. Unmanned aerial vehicles (UAVs) with thermal infrared (TIR) sensors are effective for monitoring and counting threatened Vietnamese primates. Primates 2023, 64, 407–413. [Google Scholar] [CrossRef]
- Wearn, O.R.; Trinh-Dinh, H.; Le, Q.K.; Nguyen, T.D. UAV-assisted counts of group size facilitate accurate population surveys of the Critically Endangered cao vit gibbon Nomascus nasutus. Oryx 2024, 58, 183–186. [Google Scholar] [CrossRef]
- Wich, S.A.; Bonnin, N.; Hutschenreiter, A.; Piel, A.K.; Chitayat, A.; Stewart, F.A.; Pintea, L.; Kerby, J.T. Using drones to determine chimpanzee absences at the edge of their distribution in western Tanzania. Remote Sens. 2023, 15, 2019. [Google Scholar] [CrossRef]
- van Berkel, T.; Dahms, T.; Mbende, M.; Loota, J.B.; Jocqué, M. Detection of bonobos (Pan Paniscus) in tropical rainforest canopies using drone-based thermal imaging: A first step towards accurately estimating Population Sizes? Int. J. Primatol. 2022, 44, 240–244. [Google Scholar] [CrossRef]
- Duporge, I.; Kholiavchenko, M.; Harel, R.; Wolf, S.; Rubenstein, D.; Crofoot, M.; Berger-Wolf, T.; Lee, S.; Barreau, J.; Kline, J.; et al. BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos. arXiv 2024, arXiv:2405.17698. [Google Scholar]
- Semel, B.P.; Karpanty, S.M.; Vololonirina, F.F.; Rakotonanahary, A.N. Eyes in the sky: Assessing the feasibility of low-cost, ready-to-use unmanned aerial vehicles to monitor primate populations directly. Folia Primatol. 2020, 91, 69–82. [Google Scholar] [CrossRef]
- He, G.; Yan, X.; Zhang, X.; Guo, M.; Wang, J.; Wei, Q.; Shen, Y.; Wang, C.; Lei, Y.; Jin, X.; et al. Undertaking wildlife surveys with unmanned aerial vehicles in rugged mountains with dense vegetation: A tentative model using Sichuan Snub-nosed monkeys in China. Glob. Ecol. Conserv. 2023, 48, e02685. [Google Scholar] [CrossRef]
- Rahman, D.A.; Setiawan, Y.; Rahman, A.A.A.F.; Martiyani, T.R. Javan langur responses to the repeated exposure of ground survey and novel stimulus, unmanned aerial vehicles. IOP Conf. Ser. Earth Environ. Sci. 2021, 948, 012006. [Google Scholar] [CrossRef]
- Aureli, F.; Schaffner, C.M.; Boesch, C.; Bearder, S.K.; Call, J.; Chapman, C.A.; Connor, R.; Di Fiore, A.; Dunbar, R.I.M.; Henzi, S.P.; et al. Fission-fusion dynamics new research frameworks. Curr. Anthropol. 2008, 49, 627–654. [Google Scholar] [CrossRef]
- Spaan, D.; Ramos-Fernández, G.; Schaffner, C.M.; Pinacho-Guendulain, B.; Aureli, F. How survey design affects monkey counts: A case study on individually recognized spider monkeys (Ateles geoffroyi). Folia Primatol. 2017, 88, 409–420. [Google Scholar] [CrossRef]
- Cortes-Ortíz, L.; Solano-Rojas, D.; Rosales-Meda, M.; Williams-Guillén, K.; Méndez-Carvajal, P.G.; Marsh, L.K.; Canales-Espinosa, D.; Mittermeier, R.A. Ateles geoffroyi (Geoffroy’s Spider Monkey), The IUCN Red List of Threatened Species 2021. Available online: https://www.iucnredlist.org/species/2279/191688782 (accessed on 1 June 2024).
- Méndez-Carvajal, P.G.; Rodríguez, M.E.; Pozo Montuy, G.; Chaves, Ó.M.; Sanchez-Porra, R.; Gutierrez-Pineda, K.; Spaan, D.; Pinel, E.; Zaldaña-Orantes, K. Central American Spider Monkey Ateles Geoffroyi Kühl, 1820. In Primates in Peril: The World’s 25 Most Endangered Primates 2022–2023; Reuter, K.E., Rylands, A., Jerusalinsky, L., Swhictzer, C., Strier, K., Ratzimbasafy, J., Humle, T., Eds.; Re:wild: Austin, TX, USA, 2022; pp. 135–140. [Google Scholar]
- Corcoran, E.; Denman, S.; Hamilton, G. Evaluating new technology for biodiversity monitoring: Are drone surveys biased? Ecol. Evol. 2021, 11, 6649–6656. [Google Scholar] [CrossRef]
- Krishnan, B.S.; Jones, L.R.; Elmore, J.A.; Samiappan, S.; Evans, K.O.; Pfeiffer, M.B.; Blackwell, B.F.; Iglay, R.B. Fusion of visible and thermal images improves automated detection and classification of animals for drone surveys. Sci. Rep. 2023, 13, 10385. [Google Scholar] [CrossRef]
- Burghardt, G.M.; Bartmess-LeVasseur, J.N.; Browning, S.A.; Morrison, K.E.; Stec, C.L.; Zachau, C.E.; Freeberg, T.M. Perspectives—Minimizing observer bias in behavioral studies: A review and recommendations. Ethology 2012, 118, 511–517. [Google Scholar] [CrossRef]
- Pietrangeli, E.; Saldaña-Sánchez, A.A.; Spaan, D.; Aureli, F. Let’s not use it! A dynamic no-use zone between the home ranges of two spider monkey groups. Primates 2024, 65, 173–181. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Raja Segaran, R.; Reid, I.; Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef]
- Richards, S.A. Likelihood and Model Selection. In Ecological Statistics; Fox, G.A., Negrete-Yankelevich, S., Sosa, V.J., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 58–80. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Linear Mixed-Effects Models using Eigen and S4, version 1.1-10, Package Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 February 2024).
- Shishkina, T.; Farmus, L.; Cribbie, R.A. Testing for a lack of relationship among categorical variables. Quant. Methods Psychol. 2018, 14, 167–179. [Google Scholar] [CrossRef]
- Meyer, D.; Zeileis, A.; Hornik, K.; Gerber, F.; Friendly, M.; Meyer, M.D. Visualizing Categorical Data; Version. 1.4-12, Package ‘vcd’; CRAN: Windhoek, Nambia, 2020. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Knief, U.; Forstmeier, W. Violating the normality assumption may be the lesser of two evils. Behav. Res. Methods 2021, 53, 2576–2590. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Finan, C. Linear regression and the normality assumption. J. Clin. Epidemiol. 2018, 98, 146–151. [Google Scholar] [CrossRef]
- Barelli, C.; Mundry, R.; Araldi, A.; Hodges, K.; Rocchini, D.; Rovero, F. Modeling primate abundance in complex landscapes: A case study from the Udzungwa mountains of Tanzania. Int. J. Primatol. 2015, 36, 209–226. [Google Scholar] [CrossRef]
- Forstmeier, W.; Schielzeth, H. Cryptic multiple hypotheses testing in linear models: Overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 2010, 65, 47–55. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Paik, M.C. The Measurement of Interrater Agreement. In Statistical Methods for Rates and Proportions, 3rd ed.; J. Wiley: Hoboken, NJ, USA, 2003; p. 760. [Google Scholar]
- Gamer, M.; Lemon, J.; Fellows, I.; Singh, P. irr: Various Coefficients of Interrater Reliability and Agreement; Version 0.84.1; CRAN: Windhoek, Nambia, 2022. [Google Scholar]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Whitworth, A.; Whittaker, L.; Huarcaya, R.P.; Flatt, E.; Morales, M.L.; Connor, D.; Priego, M.G.; Forsyth, A.; Beirne, C. Spider monkeys rule the roost: Ateline sleeping sites influence rainforest heterogeneity. Animals 2019, 9, 1052. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, K.S.; Notman, H.; Bonenfant, C.; Pavelka, M.S.M. Assessing the Occurrence of Sexual Segregation in Spider Monkeys (Ateles geoffroyi yucatanensis), Its Mechanisms and Function. Int. J. Primatol. 2014, 35, 425–444. [Google Scholar] [CrossRef]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests—Preliminary results. Int. J. Remote Sens. 2018, 39, 5504–5521. [Google Scholar] [CrossRef]
- Linchant, J.; Lhoest, S.; Quevauvillers, S.; Lejeune, P.; Vermeulen, C.; Ngabinzeke, J.S.; Belanganayi, B.L.; Delvingt, W.; Bouché, P. UAS imagery reveals new survey opportunities for counting hippos. PLoS ONE 2018, 13, e0206413. [Google Scholar]
- Spaan, D.; Ramos-fernández, G.; Bonilla-moheno, M.; Schaffner, C.M.; Aureli, F. The impact of the establishment of otoch ma’ax yetel kooh protected area (YucatÁn, mexico) on populations of two neotropical primates. Parks 2021, 27, 35–42. [Google Scholar] [CrossRef]
- Kuhlmann, K.; Fontaine, A.; Brisson-Curadeau, E.; Bird, D.M.; Elliott, K.H. Miniaturization eliminates detectable impacts of drones on bat activity. Methods Ecol. Evol. 2022, 13, 842–851. [Google Scholar] [CrossRef]
- Stephenson, P.J.; Carbone, G. Guidelines for Planning and Monitoring Corporate Biodiversity Performance; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2021. [Google Scholar]
Species | Camera Type | Flight Height Above Ground Level (m) | Drone Speed (m/s) | Camera Angle (°) | Reference |
---|---|---|---|---|---|
Alouatta palliata | TIR and RGB | 80–100 | 3 | N.S. | [21] |
TIR | 90–100 | 2.8–5 | −90 | [25] | |
Ateles geoffroyi | TIR and RGB | 80–100 | 3 | N.S. | [21] |
TIR | 90–100 | 2.8–5 | −90 | [25] | |
TIR | 60–70 | N.S. | −90 | [23] | |
RGB | 35–40 | 0.8 | −90 | [20] | |
Hylobates moloch | TIR and RGB | 10–120 | 5 | −90 | [42] |
Macaca fascicularis | TIR | 10–100 | 8.5–11 | N.S. | [30] |
* Macaca fuscata | TIR and RGB | 120–150 | 2–5 | N.S. | [36] |
Nasalis larvatus | TIR | 80–120 | 1–7 | −90 | [29] |
* Nomascus gabriellae | TIR and RGB | 50–80 | N.S. | N.S. | [47] |
Nomascus hainanus | TIR | 50 | N.S. | N.S. | [24] |
TIR and RGB | 5–50 | 5 | −90 | [33] | |
Nomascus nasutus | TIR and RGB | 30–120 | ** | N.S. | [48] |
Pan troglodytes | RGB | 120 | N.S. | N.S. | [14] |
TIR | N.S. | N.S. | −90 | [49] | |
Pan paniscus | TIR | 100–120 | 8–12 | N.S: | [50] |
# Papio anubis | RGB | 20 | N.S. | N.S. | [51] |
Pongo sp. | TIR | 60–200 | N.S. | N.S. | [46] |
Pongo pygmaeus | TIR | 80–120 | 1–7 | −90 | [29] |
Presbytis comate | TIR and RGB | 10–120 | 5 | −90 | [42] |
Propithecus tattersalli | RGB | 15–55 | N.S. | N.S. | [52] |
* Pygathrix cinérea | TIR and RGB | 50–80 | N.S. | N.S. | [47] |
Rhinopithecus roxellana | TIR and RGB | 150–250 | 6 | −90 | [53] |
Trachypithecus auratus | TIR and RGB | 10–120 | 5 | −90 | [42] |
TIR and RGB | 20–100 | 8.5–11 | N.S. | [54] | |
* Trachypithecus delacouri * Trachypithecus hatinhensis | TIR and RGB | 50–80 | N.S. | N.S. | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinel-Ramos, E.J.; Aureli, F.; Wich, S.; Longmore, S.; Spaan, D. Evaluating Thermal Infrared Drone Flight Parameters on Spider Monkey Detection in Tropical Forests. Sensors 2024, 24, 5659. https://doi.org/10.3390/s24175659
Pinel-Ramos EJ, Aureli F, Wich S, Longmore S, Spaan D. Evaluating Thermal Infrared Drone Flight Parameters on Spider Monkey Detection in Tropical Forests. Sensors. 2024; 24(17):5659. https://doi.org/10.3390/s24175659
Chicago/Turabian StylePinel-Ramos, Eduardo José, Filippo Aureli, Serge Wich, Steven Longmore, and Denise Spaan. 2024. "Evaluating Thermal Infrared Drone Flight Parameters on Spider Monkey Detection in Tropical Forests" Sensors 24, no. 17: 5659. https://doi.org/10.3390/s24175659
APA StylePinel-Ramos, E. J., Aureli, F., Wich, S., Longmore, S., & Spaan, D. (2024). Evaluating Thermal Infrared Drone Flight Parameters on Spider Monkey Detection in Tropical Forests. Sensors, 24(17), 5659. https://doi.org/10.3390/s24175659