Modular Pressure and Flow Rate-Balanced Microfluidic Serial Dilution Networks for Miniaturised Point-of-Care Diagnostic Platforms
<p>Serial diluter pressure and flow rate balanced unit cell. (<b>a</b>) Optimised design to generate dilution ratio <span class="html-italic">DR</span> = 2:3. If sample is supplied through inlet B at concentration <span class="html-italic">C<sub>B</sub></span> the concentration of the diluted sample at out C will be <span class="html-italic">C<sub>C</sub></span> = <span class="html-italic">DR·C<sub>B</sub></span> (<b>b</b>) Microfluidic network hydraulic resistance analogous electrical circuit. The designed flowrate is 0.4 μL/min. The sample is assumed to enter from inlet B.</p> "> Figure 2
<p>The two-stage stepwise serial diluter of the PCB based device (<b>a</b>) design overview highlighting the balanced modular unit stage (<b>b</b>) electrical analogous resistor-base network of an n-stage serial diluter design. The dilution ratio per stage is <span class="html-italic">DR = 2:3</span>.</p> "> Figure 3
<p>Pressure and flow rate balanced unit cell simulation results (<b>a</b>) concentration field overview on the device symmetry <span class="html-italic">x</span>-<span class="html-italic">y</span> plane (<span class="html-italic">z</span> = 32 μm) (<b>b</b>) iso-pressure lines overview in case of inlet flow rate 0.4 μL/min and <span class="html-italic">DR</span> 2:3.</p> "> Figure 4
<p>The design rules of the pressure and flow rate balanced modular unit cell showing the required microchannel lengths for various dilution ratios. Microchannel widths are kept the same as the optimised modular unit cell-generating dilution ratio of 2:3.</p> "> Figure 5
<p>Pressure and flow rate balanced PCB two-stage serial diluter simulation results. (<b>a</b>) concentration field overview on the device symmetry x-y plane (z = 32 μm) (<b>b</b>) iso-pressure surfaces. The table summarises the average pressure at the inlets and the average concertation values at the outlets for various flow rates.</p> "> Figure 6
<p>Serial diluter unit cell prototyped on PMMA. (<b>a</b>) design top view. Simulation results of the concentration field (<b>b</b>) detail of the concentration field at the merging point 3. Sample inlet and buffer inlet flow rates equal to (<b>c</b>) 5 μL/min (<b>d</b>) 10 μL/min (<b>e</b>) 30 μL/min (<b>f</b>) 120 μL/min.</p> "> Figure 7
<p>Dilution ratio validation of the two-stage PMMA prototype using commercial Accu-Check<sup>®</sup> glucose meter. MFS 430μm (<b>a</b>) The prototyped two-stage PMMA diluter during performance validation experiment. Channel height is 275 μm (<b>b</b>) The solid marks represent the dilution performance under 10 μL/min flow rate.</p> "> Figure 8
<p>Dilution ratio validation of the two-stage PCB prototype using commercial Aviva Accu-Check<sup>®</sup> glucose meter. (<b>a</b>) The prototyped two-stage PCB diluter during performance validation experiment (<b>b</b>) design used for the prototype fabrication. (<b>c</b>) The solid marks represent the dilution performance under 0.4 and 0.2 μL/min flow rate (<b>d</b>) detail of the fabricated prototype after sealing fabrication step around the merging point of stage 2 (the device is empty).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pressure and Flow Rate Balanced Unit Cell Design
2.2. Analytical Design, Simulation Model and Optimisation
2.2.1. Laminar Flow Model
2.2.2. Diffusion Model
2.2.3. Mixing Efficiency
2.3. Device Fabrication
2.3.1. PCB Based Devices
2.3.2. PMMA Based Devices
3. Results and Discussion
3.1. Computational Results
3.1.1. First-Cut Approximation
3.1.2. Simulation and Optimisation
Single-Stage Diluter
The Two-Stage Serial Diluter
3.2. Experimental Performance and Validation
3.2.1. PMMA Prototype: Dilution Ratio Stability and Performance Validation
3.2.2. PCB-Based Microfluidic Prototype: Dilution Ratio Performance Validation
4. Conclusions
Data Access Statement
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fan, J.Z.; Li, B.Q.; Xing, S.Y.; Pan, T.R. Reconfigurable microfluidic dilution for high-throughput quantitative assays. Lab Chip 2015, 15, 2670–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosokawa, M.; Hayashi, T.; Mori, T.; Yoshino, T.; Nakasono, S.; Matsunaga, T. Microfluidic Device with Chemical Gradient for Single-Cell Cytotoxicity Assays. Anal. Chem. 2011, 83, 3648–3654. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wo, A.M.; Jong, D.S. A microfluidic concentration generator for dose-response assays on ion channel pharmacology. Lab Chip 2012, 12, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Pihl, J.; Sinclair; Sahlin, E.; Karlsson, M.; Petterson, F.; Olofsson, J.; Orwar, O. Microfluidic gradient-generating device for pharmacological profiling. Anal. Chem. 2005, 77, 3897–3903. [Google Scholar] [CrossRef]
- Neils, C.; Tyree, Z.; Finlayson, B.; Folch, A. Combinatorial mixing of microfluidic streams. Lab Chip 2004, 4, 342–350. [Google Scholar] [CrossRef]
- Lipman, E.A.; Schuler, B.; Bakajin, O.; Eaton, W.A. Single-molecule measurement of protein folding kinetics. Science 2003, 301, 1233–1235. [Google Scholar] [CrossRef]
- Paegel, B.M.; Grover, W.H.; Skelley, A.M.; Mathies, R.A.; Joyce, G.F. Microfluidic serial dilution circuit. Anal. Chem. 2006, 78, 7522–7527. [Google Scholar] [CrossRef]
- Horrocks, M.H.; Rajah, L.; Jonsson, P.; Kjaergaard, M.; Vendruscolo, M.; Knowles, T.P.; Klenerman, D. Single-molecule measurements of transient biomolecular complexes through microfluidic dilution. Anal. Chem. 2013, 85, 6855–6859. [Google Scholar] [CrossRef]
- Holden, M.A.; Kumar, S.; Beskok, A.; Cremer, P.S. Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow. J. Micromech. Microeng. 2003, 13, 412–418. [Google Scholar] [CrossRef]
- Somaweera, H.; Haputhanthri, S.O.; Ibraguimov, A.; Pappas, D. On-chip gradient generation in 256 microfluidic cell cultures: Simulation and experimental validation. Analyst 2015, 140, 5029–5038. [Google Scholar] [CrossRef]
- Kim, C.; Kim, C.; Lee, K.; Kim, J.H.; Shin, K.S.; Lee, K.J.; Kim, T.S.; Kang, J.Y. A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations. Lab Chip 2008, 8, 473–479. [Google Scholar] [CrossRef]
- Jacobson, S.C.; McKnight, T.E.; Ramsey, J.M. Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal. Chem. 1999, 71, 4455–4459. [Google Scholar] [CrossRef]
- Dertinger, S.K.W.; Chiu, D.T.; Jeon, N.L.; Whitesides, G.M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 2001, 73, 1240–1246. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Ng, J.M.K.; Stroock, A.D.; Dertinger, S.K.W.; Whitesides, G.M. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J. Am. Chem. Soc. 2003, 125, 5294–5295. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Mak, S.Y.; Sauret, A.; Shum, H.C. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab Chip 2014, 14, 744–749. [Google Scholar] [CrossRef]
- Walker, G.; Beebe, D.J. A passive pumping method for microfluidic devices. Lab Chip 2002, 2, 131–134. [Google Scholar] [CrossRef]
- Lee, K.; Lee, K.; Kim, C.; Jung, G.; Kim, T.S.; Kang, J.Y.; Oh, K.W. Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid. Nanofluid. 2010, 8, 677–685. [Google Scholar] [CrossRef]
- Weibull, E.; Matsui, S.; Sakai, M.; Svahn, H.A.; Ohashi, T. Microfluidic device for generating a stepwise concentration gradient on a microwell slide for cell analysis. Biomicrofluidics 2013, 7, 064115. [Google Scholar] [CrossRef] [Green Version]
- Occhetta, P.; Centola, M.; Tonnarelli, B.; Redaelli, A.; Martin, I.; Rasponi, M. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes. Sci. Rep. 2015, 5, 10288. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.E.; Han, J.; Choi, J.W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Urdea, M.; Penny, L.A.; Olmsted, S.S.; Giovanni, M.Y.; Kaspar, P.; Shepherd, A.; Wilson, P.; Dahl, C.A.; Buchsbaum, S.; Moeller, G.; et al. Requirements for high impact diagnostics in the developing world. Nature 2006, 444 (Suppl. 1), 73–79. [Google Scholar] [CrossRef]
- Su, W.; Gao, X.; Jiang, L.; Qin, J. Microfluidic platform towards point-of-care diagnostics in infectious diseases. J. Chromatogr. A. 2015, 13I77, 13–26. [Google Scholar] [CrossRef]
- Merkel, T.; Graeber, M.; Pagel, L. A new technology for fluidic microsystems based on PCB technology. Sens. Actuator. A Phys. 1999, 77, 98–105. [Google Scholar] [CrossRef]
- Wego, A.; Richter, S.; Pagel, L. Fluidic microsystems based on printed circuit board technology. J. Micromech. Microeng. 2001, 11, 528–531. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Huang, X.Y. Miniature valveless pumps based on printed circuit board technique. Sens. Actuator. A Phys. 2001, 88, 104–111. [Google Scholar] [CrossRef]
- Aracil, C.; Perdigones, F.; Moreno, J.M.; Luque, A.; Quero, J.M. Portable Lab-on-PCB platform for autonomous micromixing. Microelectron. Eng. 2015, 131, 13–18. [Google Scholar] [CrossRef]
- Läritz, C.; Pagel, L. A microfluidic pH-regulation system based on printed circuit board technology. Sens. Actuator. A Phys. 2000, 84, 230–235. [Google Scholar] [CrossRef]
- Lammerink, T.S.J.; Spiering, V.L.; Elwenspoek, M.; Fluitman, J.H.J.; van den Berg, A. Modular concept for fluid handling systems—A demonstrator micro analysis system. In Proceedings of the Ninth Annual International Workshop on Micro Electro Mechanical Systems, San Diego, CA, USA, 11–15 February 1996; pp. 389–394. [Google Scholar]
- Evans, D.; Evans, D.; Papadimitriou, K.I.; Greathead, L.; Vasilakis, N.; Pantelidis, P.; Kelleher, P.; Morgan, H.; Prodromakis, T. An Assay System for Point-of-Care Diagnosis of Tuberculosis using Commercially Manufactured PCB Technology. Sci. Rep. 2017, 7, 685. [Google Scholar] [CrossRef]
- Gassmann, S.; Trozjuk, A.; Singhal, J.; Schuette, H.; Miranda, M.L.; Zielinski, O. PCB based micro fluidic system for thermal cycling of seawater samples. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015. [Google Scholar]
- Burdallo, I.; Jimenez-Jorquera, C.; Fernandez-Sanchez, C.; Baldi, A. Integration of microelectronic chips in microfluidic systems on printed circuit board. J. Micromechan. Microeng. 2012, 22, 105022. [Google Scholar] [CrossRef]
- Lian, K.; O’Rourke, S.; Sadler, D.; Eliacin, M.; Gamboa, C.; Terbrueggen, R.; Chason, M. Integrated microfluidic components on a printed wiring board platform. Sens. Actuator. B Chem. 2009, 138, 21–27. [Google Scholar] [CrossRef]
- Hartman, M.R.; Ruiz, R.C.H.; Hamada, S.; Xu, C.Y.; Yancey, K.G.; Yu, Y.; Han, W.; Luo, D. Point-of-care nucleic acid detection using nanotechnology. Nanoscale 2013, 5, 10141–10154. [Google Scholar] [CrossRef]
- Evans, D.; Papadimitriou, K.; Vasilakis, N.; Pantelidis, P.; Kelleher, P.; Morgan, H.; Prodromakis, T. A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection. Sensors 2018, 18, 4011. [Google Scholar] [CrossRef]
- Papadimitriou, K.I.; Wang, C.; Rogers, M.L.; Gowers, S.A.; Leong, C.L.; Boutelle, M.G.; Drakakis, E.M. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring. Front. Hum. Neurosci. 2016, 10, 212. [Google Scholar] [CrossRef]
- Wu, L.L.; Babikian, S.; Li, G.P.; Bachman, M. Microfluidic Printed Circuit Boards. In Proceedings of the 2011 IEEE 61st Electronic Components and Technology Conference (Ectc), Lake Buena Vista, FL, USA, 31 May–3 June 2011; pp. 1576–1581. [Google Scholar]
- Bachman, M.; Li, G.P. Integrated MEMS in package. Circuit World 2012, 38, 184–192. [Google Scholar]
- Moschou, D.; Tserepi, A. The lab-on-PCB approach: Tackling the mu TAS commercial upscaling bottleneck. Lab Chip 2017, 17, 1388–1405. [Google Scholar] [CrossRef]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 2012, 12, 515–545. [Google Scholar] [CrossRef]
- Thomas, R.S.; Morgan, H.; Green, N.G. Negative DEP traps for single cell immobilisation. Lab Chip 2009, 9, 1534–1540. [Google Scholar] [CrossRef]
- SolidWorks, D.S.; Street, W.; Waltham, M. SOLIDWORKS 2016. Available online: https://www.solidworks.com/ (accessed on 20 February 2019).
- COMSOL Multiphysics® v. 5.2a; COMSOL AB: Stockholm, Sweden; Available online: www.comsol.com (accessed on 20 February 2019).
- Vasilakis, N.; Moschou, D.; Prodromakis, T. Computationally efficient concentration-based model for accurate evaluation of T-junction inlet staggered herringbone micromixers. Micro Nano Lett. 2016, 11, 236–239. [Google Scholar]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press LLC: Boca Raton, Florence, Italy, 2016; Taylor & Francis Group Distributor. 1 online resource; Available online: https://www.crcpress.com/ (accessed on 20 February 2019).
- Altium Designer® v. 16; Altium Europe GmbH: Karlsruhe, Germany; Available online: http://www.altium.com (accessed on 20 February 2019).
- Munson, B.R.; Okiishi, T.H.; Huebsch, W.W.; Rothmayer, A.P. Fundamentals of Fluid Mechanics, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; xix; pp. 747–756. 10p. [Google Scholar]
- Camesasca, M.; Manas-Zloczower, I.; Kaufman, M. Entropic characterization of mixing in microchannels. J. Micromechan. Microeng. 2005, 15, 2038–2044. [Google Scholar] [CrossRef]
- Gobby, D.; Angeli, P.; Gavriilidis, A. Mixing characteristics of T-type microfluidic mixers. J. Micromechan. Microeng. 2001, 11, 126–132. [Google Scholar] [CrossRef]
- Nguyen, N.-T. Micromixers: Fundamentals, design and fabrication, 2nd ed.; Micro & nano technologies series; William Andrew: Amsterdam, The Netherlands; London, UK, 2012; xiv; 351p. [Google Scholar]
- Prakash, S.; Kumar, S. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask. Opt. Laser Technol. 2017, 94, 180–192. [Google Scholar] [CrossRef]
Channel | Matlab® first-cut Approximation P1-P6 = 100 Pa, P1 = 110 Pa | COMSOL® Optimisation Results P1-P6 = 85.4 Pa, P1 = 109.8 Pa | Matlab® Validation Results P1-P6 = 85.4 Pa, P1 = 109.8 Pa | ||
---|---|---|---|---|---|
Width cw [μm] | Length L [mm] | Width cw [μm] | Length L Optimization Study [mm] | Length L Validation Calculations[mm] | |
1-2 | 2 MFS = 300 | 16.0 | 2 MFS = 300 | 3.7 | 3.4 |
4-3 | 2 MFS = 300 | 18.7 | 263 | 5.4 | 5.3 |
2-3 | 160 | 2.5 | 160 | 2.5 | 2.5 |
2-6 | 170 | 69.0 | 170 | 67.5 | 69.0 |
3-5 | 380 | 57.9 | 380 | 57.9 | 57.9 |
5-7 | 2 MFS = 300 | 8.5 | 220 | 14.4 | 14.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilakis, N.; Papadimitriou, K.I.; Morgan, H.; Prodromakis, T. Modular Pressure and Flow Rate-Balanced Microfluidic Serial Dilution Networks for Miniaturised Point-of-Care Diagnostic Platforms. Sensors 2019, 19, 911. https://doi.org/10.3390/s19040911
Vasilakis N, Papadimitriou KI, Morgan H, Prodromakis T. Modular Pressure and Flow Rate-Balanced Microfluidic Serial Dilution Networks for Miniaturised Point-of-Care Diagnostic Platforms. Sensors. 2019; 19(4):911. https://doi.org/10.3390/s19040911
Chicago/Turabian StyleVasilakis, Nikolaos, Konstantinos I. Papadimitriou, Hywel Morgan, and Themistoklis Prodromakis. 2019. "Modular Pressure and Flow Rate-Balanced Microfluidic Serial Dilution Networks for Miniaturised Point-of-Care Diagnostic Platforms" Sensors 19, no. 4: 911. https://doi.org/10.3390/s19040911
APA StyleVasilakis, N., Papadimitriou, K. I., Morgan, H., & Prodromakis, T. (2019). Modular Pressure and Flow Rate-Balanced Microfluidic Serial Dilution Networks for Miniaturised Point-of-Care Diagnostic Platforms. Sensors, 19(4), 911. https://doi.org/10.3390/s19040911