Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode
<p>Microscopic image of the IDWµE fabricated on a glass slide with dimensions of 16 mm × 63 mm × 1.1 mm. (<b>a</b>) The electrode array microscopic images at Low magnifications (100×) and high magnifications (200×) showing a 30 µm width for finger and spacing, respectively. (<b>b</b>) A schematic illustration of the DTSP functionalization and immobilization of anti-CRP-antibodies onto the IDWµE array. (<b>c</b>) The underlying working principle of the CRP immunosensor based on quantifying the total capacitance of the sensor after sequential formation of SAM, anti-CRP antibody, BSA, and CRP layers; (where C1 = C<sub>SAM</sub>, C2 = C<sub>anti-CRP-Ab</sub>, C3 = C<sub>CRP</sub>). (<b>d</b>) The sequential surface modification steps of the IDWµE array for immunosensing of CRP.</p> "> Figure 2
<p>X-ray photoelectron spectroscopy spectra (XPS) of DTSP-SAM on IDWµE: (<b>a</b>) S2p and C1s (<b>b</b>) bands.</p> "> Figure 3
<p>AFM topographical images of DTSP/IDWµE (<b>a</b>), DTSP/IDWµE (<b>b</b>), anti-CRP-antibody/DTSP/IDWµE (<b>c</b>), and CRP/BSA/anti-CRP-antibody/DTSP/IDWµE arrays (<b>d</b>) scanned at a rate of 0.5 Hz with topographic profile.</p> "> Figure 4
<p>Effect of pH (<b>a</b>), concentration of Anti-CRP-Ab (<b>b</b>) and the incubation time (<b>c</b>) on the response of the immunosensor to 1 ng mL<sup>−1</sup> of CRP analyte.</p> "> Figure 5
<p>CV (<b>a</b>) and Nyquist plot (<b>b</b>) of bare IDWµE (<span class="html-italic">i</span>), DTSP/IDWµE (<span class="html-italic">ii</span>), anti-CRP-antibody/DTSP/IDWµE (<span class="html-italic">iii</span>) and BSA/anti-CRP-antibody/DTSP/IDWµE arrays (<span class="html-italic">iv</span>) and BSA/anti-CRP-antibody/DTSP/IDWµE arrays with 0.1 ng mL<sup>−</sup><sup>1</sup> of CRP (<span class="html-italic">v</span>) in 5 mM K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> (1:1) and 0.1 M KCl in 1× PBS.</p> "> Figure 6
<p>Bode plot of the impedance magnitude (∣Z∣) (<b>a</b>) and reactive capacitance (C) (<b>b</b>) obtained at IDWµE (<span class="html-italic">i</span>), DTSP/IDWµE (<span class="html-italic">ii</span>), anti-CRP-antibody/DTSP/IDWµE (<span class="html-italic">iii</span>) BSA/anti-CRP-antibody/DTSP/IDWµE arrays (<span class="html-italic">iv</span>) and BSA/anti-CRP-antibody/DTSP/IDWµE array with 0.1 ng mL<sup>−</sup><sup>1</sup> (<span class="html-italic">v</span>) of CRP at various modification stages of the electrode surface for the detection of CRP in 1× PBS.</p> "> Figure 7
<p>Normalized capacitance (|∆C|) of the BSA/anti-CRP-antibodies/DTSP/IDWµE array measured with respect to increased CRP concentrations diluted in 1× PBS (<b>a</b>); Calibration plot for |∆C|<sub>at 10Hz</sub> with increasing CRP concentrations diluted in 1× PBS and ranging from 0.01 to 10,000 ng mL<sup>−1</sup> (<b>b</b>). Each data point represents the average of three values (<span class="html-italic">n</span> = 3), with the range indicated by error bars.</p> "> Figure 8
<p>Interference study of the BSA/anti-CRP-antibodies/DTSP/IDWµE array with different interfering agents (Human chorionic gonadotrophin (HCG); Insulin; Cardiac troponin-I (cTn)) in 1× PBS, pH 7.4 at a concentration of 0.1 ng mL<sup>−1</sup> and a frequency of 10 Hz (<b>a</b>); Storage stability study of the BSA/anti-CRP-antibodies/DTSP/IDWµE array at a regular interval of 1 day in 100 µL of 1× PBS (pH 7.4) at 0.1 ng mL<sup>−1</sup> and a frequency of 10 Hz (<b>b</b>). Each data point represents the average of three values (<span class="html-italic">n</span> = 3), with the range indicated by error bars.</p> "> Figure 9
<p>Normalized capacitance (|∆C|) of the BSA/anti-CRP-antibodies/DTSP/IDWµE array measured with respect to increasing CRP concentrations diluted in HS (Conc.<sub>HS-CRP</sub>) (<b>a</b>); calibration plot for |∆C|<sub>at 10Hz</sub> with increasing CRP concentrations diluted in HS ranging from 0.01 to 10,000 ng mL<sup>−1</sup> (<b>b</b>). Each data point represents the average of three values (<span class="html-italic">n</span> = 3), with the range indicated by error bars.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Fabrication of Interdigitated Wave-Shaped Microelectrode Array
2.4. Functionalization of Electrode Arrays with DTSP
2.5. Affinity Immunoassay Protocol
2.6. Preparation of HS Samples
3. Results and Discussion
3.1. Characterization of Modified Electrode Arrays
3.1.1. Chemical Composition of the Modified Electrode Arrays
3.1.2. Topography of Modified Electrode Arrays
3.2. Optimization of Experimental Conditions
3.3. Voltammetry and Impedance Analysis of Modified Electrode Arrays
3.4. Capacitive Analysis of CRP in 1× PBS
3.5. Stability, Reproducibility, and Interference Studies
3.6. Capacitive Detection of CRP in Human Serum
3.7. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, K.W.; Kim, B.; Moon, H.W.; Lee, S.H.; Kim, H.R. Role of C-reactive protein in osteoclastogenesis in rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrotriya, S.; Walsh, D.; Bennani-Baiti, N.; Thomas, S.; Lorton, C. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review. PLoS ONE 2015, 10, e0143080. [Google Scholar] [CrossRef] [PubMed]
- Thangamuthu, M.; Santschi, C.; Martin, O.J.F. Label-Free Electrochemical Immunoassay for C-Reactive Protein. Biosensors 2018, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.; Song, Q.; Ferrigno, P.K.; Bueno, P.R.; Davis, J.J. Sensitive Affimer and Antibody Based Impedimetric Label-Free Assays for C-Reactive Protein. Anal. Chem. 2012, 84, 6553–6560. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Ko, H.; Lee, G.Y.; Chang, S.Y.; Chang, Y.W.; Kang, M.J. Development of a sensitive SPR biosensor for C-reactive protein (CRP) using plasma-treated Parylene-N film. Sens. Actuators B Chem. 2015, 207, 133–138. [Google Scholar] [CrossRef]
- Yen, Y.K.; Lai, Y.C.; Hong, W.T.; Pheanpanitporn, Y.; Chen, C.S.; Huang, L.S. Electrical Detection of C-Reactive Protein Using a Single Free-Standing, Thermally Controlled Piezoresistive Microcantilever for Highly Reproducible and Accurate Measurements. Sensors 2013, 13, 9653–9668. [Google Scholar] [CrossRef]
- Wu, J.G.; Wei, S.C.; Chen, Y.; Chen, J.H.; Luo, S.C. Critical Study of the Recognition between C-Reactive Protein and Surface-Immobilized Phosphorylcholine by Quartz Crystal Microbalance with Dissipation. Langmuir 2018, 34, 943–951. [Google Scholar]
- Jampasa, S.; Siangproh, W.; Laocharoensuk, R.; Vilaivan, T.; Chailapakul, O. Electrochemical detection of C-reactive protein based on anthraquinone labeled antibody using a screen-printed graphene electrode. Talanta 2018, 183, 311–319. [Google Scholar] [CrossRef]
- Vashist, S.K.; Venkatesh, A.G.; Schneider, E.M.; Beaudoin, C.; Luppa, P.B.; Luong, J.H.T. Bioanalytical advances in assays for C-reactive protein. Biotechnol. Adv. 2016, 34, 272–290. [Google Scholar] [CrossRef]
- Ledue, T.B.; Rifai, N. High sensitivity immunoassays for C-reactive protein: Promises and pitfalls. Clin. Chem. Lab. Med. 2001, 39, 1171–1176. [Google Scholar] [CrossRef]
- Fakanya, W.M.; Tothill, I.E. Detection of the Inflammation Biomarker C-Reactive Protein in Serum Samples: Towards an Optimal Biosensor Formula. Biosensors 2014, 4, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Kitayama, Y.; Takeuchi, T. Localized surface Plasmon resonance nanosensing of C reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization. Anal. Chem. 2014, 86, 5587–5594. [Google Scholar] [CrossRef]
- Yagati, A.K.; Park, J.; Kim, J.; Ju, H.; Chang, K.-A.; Cho, S. Sensitivity enhancement of capacitive tumor necrosis factor-α detection. Jpn. J. Appl. Phys. 2016, 55, 1–6. [Google Scholar] [CrossRef]
- Yagati, A.K.; Park, J.; Cho, S. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor. Sensors 2016, 16, 109. [Google Scholar] [CrossRef]
- Yagati, A.K.; Pyun, J.C.; Min, J.; Cho, S. Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor. Bioelectrochemistry 2016, 107, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.C.; Santos, A.; Martins, D.C.; Goes, M.S.; Bueno, P.R. Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosens. Bioelectron. 2014, 57, 96–102. [Google Scholar] [CrossRef]
- Soares, A.C.; Soares, J.C.; Shimizu, F.M.; Rodrigues, V.D.C.; Awan, I.T.; Melendez, M.E.; Piazzetta, M.H.O.; Gobbi, R.M.; Reis, A.L.; Fregnani, J.H.T.G.; et al. A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9. Analyst 2018, 143, 3302–3308. [Google Scholar] [CrossRef] [Green Version]
- Muharemagic, D.; Labib, M.; Ghobadloo, S.M.; Zamay, A.S.; Bell, J.C.; Berezovski, M.V. Anti-Fab Aptamers for Shielding Virus from Neutralizing Antibodies. J. Am. Chem. Soc. 2012, 134, 17168–17177. [Google Scholar] [CrossRef] [PubMed]
- Limbut, W.; Kanatharana, P.; Mattiasson, B.; Asawatreratanakul, P.; Thavarungkul, P. A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid. Biosens. Bioelectron. 2006, 22, 233–240. [Google Scholar] [CrossRef]
- Zhu, N.; Ulstrup, J.; Chi, Q. Surface self-assembled hybrid nanocomposites with electroactive nanoparticles and enzymes confined in a polymer matrix for controlled electrocatalysis. J. Mater. Chem. B 2015, 3, 8133–8142. [Google Scholar] [CrossRef]
- Longo, E.; Wright, K.; Caruso, M.; Gatto, E.; Palleschi, A.; Scarselli, M.; De Crescenzi, M.; Crisma, M.; Formaggio, F.; Toniolo, C.; et al. Peptide flatlandia: A new-concept peptide for positioning of electroactive probes in proximity to a metal surface. Nanoscale 2015, 7, 15495–15506. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Yndart, A.; Kumar, S.; Jayant, R.D.; Vashist, A.; Brown, A.N.; Li, C.-Z.; Nair, M. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci. Rep. 2018, 8, 9700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, S.K.; Chornokur, G.; Venugopal, M.; Bhansali, S. Dithiobis(succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol. Biosens. Bioelectron. 2010, 25, 2296–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasha, S.K.; Kaushik, A.; Vasudev, A.; Snipes, S.A.; Bhansali, S. Electrochemical immunosensing of saliva cortisol. J. Electrochem. Soci. 2014, 161, 3077–3082. [Google Scholar] [CrossRef]
- Jia, J.; Kara, A.; Pasquali, L.; Bendounan, A.; Sirotti, F.; Esaulov, V.A. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study. J. Chem. Phys. 2015, 143, 104702. [Google Scholar] [CrossRef]
- Willey, T.M.; Vance, A.L.; Bostedt, C.; van Buuren, T.; Meulenberg, R.W.; Terminello, L.J.; Fadley, C.S. Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au (111) As Observed Using Near-Edge X-ray Absorption Fine Structure. Langmuir 2004, 20, 4939–4944. [Google Scholar] [CrossRef] [Green Version]
- Mazzotta, E.; Rella, S.; Turco, A.; Malitesta, C. XPS in development of chemical sensors. RSC. Adv. 2015, 5, 83164–83186. [Google Scholar] [CrossRef]
- Shoar Abouzari, M.R.; Berkemeier, F.; Schmitz, G.; Wilmer, D. On the physical interpretation of constant phase elements. Solid. State. Ion. 2009, 180, 922–927. [Google Scholar] [CrossRef]
- Yagati, A.K.; Choi, Y.; Park, J.; Choi, J.-W.; Jun, H.-S.; Cho, S. Silver nanoflower-reduced graphene oxide composite based micro-disk electrode for insulin detection in serum. Biosens. Bioelectron. 2016, 80, 307–314. [Google Scholar] [CrossRef]
- Gobi, K.V.; Iwasaka, H.; Miura, N. Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin. Biosens. Bioelectron. 2007, 22, 1382–1389. [Google Scholar] [CrossRef] [PubMed]
- Boonkaew, S.; Chaiyo, S.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Microchim. Acta 2019, 186, 153. [Google Scholar] [CrossRef] [PubMed]
- Byzova, N.A.; Zherdev, A.V.; Vengerov, Y.Y.; Starovoitova, T.A.; Dzantiev, B.B. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein and C-reactive protein biomarkers. Microchim. Acta 2017, 184, 463–471. [Google Scholar] [CrossRef]
- Vashist, S.K.; Schneider, E.M.; Zengerle, R.; Stetten, F.V.; Luong, J.H.T. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens. Bioelectron. 2015, 66, 169–176. [Google Scholar] [CrossRef]
- Czilwik, G.; Vashist, S.K.; Klein, V.; Buderer, A.; Roth, G.; Stetten, F.V. Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv. 2015, 5, 61906–61912. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhou, J.; Yan, W.; Li, X.; Zhu, J. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal. Chem. 2008, 80, 2133–2140. [Google Scholar] [CrossRef]
- Yeom, S.-H.; Han, M.-E.; Kang, B.-H.; Kim, K.-J.; Yuan, H.; Eum, N.-S.; Kang, S.-W. Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sens. Actuators B Chem. 2013, 177, 376–383. [Google Scholar] [CrossRef]
- Christodoulides, N.; Mohanty, S.; Miller, C.S.; Langub, M.C.; Floriano, P.N.; Dharshan, P.; Ali, M.F.; Bernard, B.; Romanovicz, D.; Anslyn, E.; et al. Application of microchip assay system for the measurement of C-reactive protein in human saliva. Lab Chip 2005, 5, 261–269. [Google Scholar] [CrossRef]
- Zhou, J.; Gan, N.; Li, T.; Zhou, H.; Li, X.; Cao, Y.; Wang, L.; Sang, W.; Hu, F. Ultratrace detection of C-reactive protein by a piezoelectric immunosensor based on Fe3O4@SiO2 magnetic capture nanoprobes and HRP-antibody co-immobilized nano gold as signal tags. Sens. Actuators B Chem. 2013, 178, 494–500. [Google Scholar] [CrossRef]
CPE | ||||
---|---|---|---|---|
Electrode | Rs (Ω) | Q [×10−7·Ω−1·sn] | n | χ2 |
IDWµE array | 1493 | 33.87 | 0.8569 | 0.0059 |
DTSP-SAM | 1547 | 9.641 | 0.9429 | 0.0057 |
Anti-CRP-Ab | 1531 | 6.079 | 0.9284 | 0.0051 |
BSA | 1530 | 6.809 | 0.9498 | 0.0048 |
Assay Type | Detection Limit (ng mL−1) | Dynamic Range (ng mL−1) | Reference |
---|---|---|---|
Paper based EIA | 15 | 50–105 | [32] |
Immunochromatography | 600 | N.R | [33] |
Impedimetric IA | 0.06 | 1–1000 | [16] |
Smart phone based IA | 0.07 | 0.03–81 | [34] |
LOC-based CIA | 1.5 | 3–81 | [35] |
EIS | 0.1 | 0.1–20 | [36] |
LSPR | 10−9 | 10−7–1000 | [37] |
ETC | 5 × 10−6 | 0.01–10 | [38] |
Piezoelectric IA | 3 × 10−4 | 0.001–100 | [39] |
Impedimetric IA | 0.025 | 0.01–10,000 | This work (PBS) |
Impedimetric IA | 0.23 | 0.01–10,000 | This work (Human-serum) |
Test Sample | CRP in Diluted Serum (ng mL−1) | Spiked (ng mL−1) | Found (ng mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
A | 0 | 0.5 | 0.489 | 97.8 | 1.52 |
B | 0 | 250 | 249.51 | 99.8 | 1.99 |
C | 0 | 500 | 505.72 | 101.1 | 1.25 |
D | 0 | 1000 | 998.57 | 99.8 | 1.90 |
E | 0 | 5000 | 4999.13 | 99.9 | 1.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinnadayyala, S.R.; Park, J.; Kim, Y.H.; Choi, S.H.; Lee, S.-M.; Cho, W.W.; Lee, G.-Y.; Pyun, J.-C.; Cho, S. Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. Sensors 2019, 19, 5560. https://doi.org/10.3390/s19245560
Chinnadayyala SR, Park J, Kim YH, Choi SH, Lee S-M, Cho WW, Lee G-Y, Pyun J-C, Cho S. Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. Sensors. 2019; 19(24):5560. https://doi.org/10.3390/s19245560
Chicago/Turabian StyleChinnadayyala, Somasekhar R., Jinsoo Park, Young Hyo Kim, Seong Hye Choi, Sang-Myung Lee, Won Woo Cho, Ga-Yeon Lee, Jae-Chul Pyun, and Sungbo Cho. 2019. "Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode" Sensors 19, no. 24: 5560. https://doi.org/10.3390/s19245560
APA StyleChinnadayyala, S. R., Park, J., Kim, Y. H., Choi, S. H., Lee, S. -M., Cho, W. W., Lee, G. -Y., Pyun, J. -C., & Cho, S. (2019). Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. Sensors, 19(24), 5560. https://doi.org/10.3390/s19245560