Evaluation of Chlorophyll-a Estimation Approaches Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression and Several Traditional Algorithms from Field Hyperspectral Measurements in the Seto Inland Sea, Japan
"> Figure 1
<p>Research site locations in this study.</p> "> Figure 2
<p>Correlation between observed and modelled chlorophyll <span class="html-italic">a</span> (Chl-<span class="html-italic">a</span>) using ocean chlorophyll (OC) algorithms. The first row shows results using standard coefficients (<b>a</b>) OC2; (<b>b</b>) OC3; and (<b>c</b>) OC4. The second row shows results from recalibrated OC models using the dataset of this study (<b>d</b>) OC2; (<b>e</b>) OC3; and (<b>f</b>) (OC4).</p> "> Figure 3
<p>Selected wavebands for the three-band model algorithm using the tuning method (<b>a</b>) optimal band λ1; (<b>b</b>) optimal band λ2; and (<b>c</b>) optimal band λ3.</p> "> Figure 4
<p>Correlation between the three-band model algorithm and measured chlorophyll <span class="html-italic">a</span> (Chl-<span class="html-italic">a</span>).</p> "> Figure 5
<p>Relationship between observed chlorophyll <span class="html-italic">a</span> (Chl-<span class="html-italic">a</span>) concentration and near-infrared/red reflectance ratio, (<b>a</b>) Ratio of R(705) to R(670); (<b>b</b>) Ratio of R(693) to R(666).</p> "> Figure 6
<p>Selected wavebands for near-infrared/red algorithm using the tuning method (<b>a</b>) optimal band λ1; (<b>b</b>) optimal band λ2.</p> "> Figure 7
<p>Water-leaving reflectance (<span class="html-italic">R</span><sub>L</sub>) spectra with the spectra average (blue line) for each station ((<b>a</b>–<b>f</b>) are stations 1 to 6 in turn).</p> "> Figure 8
<p>Two-dimensional <span class="html-italic">R</span><sup>2</sup> distributions obtained through sequential regressions using all band ratios and chlorophyll <span class="html-italic">a</span> (Chl-<span class="html-italic">a</span>) concentrations for each station ((<b>a</b>–<b>f</b>) are stations 1 to 6 in turn).</p> "> Figure 9
<p>Calibrations between the three-band model algorithm and chlorophyll a (Chl-a) concentrations ((<b>a</b>–<b>f</b>) are stations 1 to 6 in turn).</p> "> Figure 10
<p>Results for the RMSE<sub>r</sub> + <span class="html-italic">J</span><sub>r</sub> when using different number of latent variables (NLV).</p> "> Figure 11
<p>Relationship between observed and predicted chlorophyll <span class="html-italic">a</span> (Chl-<span class="html-italic">a</span>) (<b>a</b>) water-leaving reflectance (<span class="html-italic">R</span><sub>L</sub>); (<b>c</b>) first derivative reflectance (FDR), and selected wavebands by iterative stepwise elimination partial least squares (ISE-PLS) for Chl-<span class="html-italic">a</span> retrieval (<b>b</b>) <span class="html-italic">R</span><sub>L</sub>; (<b>d</b>) FDR.</p> "> Figure 12
<p>Validation of iterative stepwise elimination partial least squares (ISE-PLS) method using lower chlorophyll <span class="html-italic">a</span> (Chl-<span class="html-italic">a</span>) concentration dataset (station 4 not included).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.3. OC Algorithms
2.4. Three-Band Model
2.5. Two-Band Model
2.6. ISE-PLS
2.7. Evaluation of Predictive Ability
3. Results
3.1. Chl-a Characteristics and Spectral Data
3.2. Comparison of Empirical and Semi-Analytical Models
3.2.1. Performance of Models for All Dataset
3.2.2. Performance of Models for Separated Dataset
3.3. ISE-PLS Calibration and Validation
4. Discussion
4.1. Empirical and Semi-Analytical Models Performance
4.2. ISE-PLS Performance
4.3. Applications of ISE-PLS Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hashimoto, H.; Hashimoto, T.; Matsuda, O.; Tada, K.; Tamai, K.; Uye, S.; Yamamoto, T. Biological productivity of lower trophic levels of the Seto Inland Sea. In Sustainable Development in the Seto Inland Sea, Japan—From the View Point of Fisheries; Okaichi, T., Yanagi, T., Eds.; Terra Scientific Publishing Company: Tokyo, Japan, 1997; pp. 17–58. [Google Scholar]
- Yoshie, N.; Guo, X.; Fujii, N.; Komorita, T. Ecosystem and nutrient dynamics in the Seto Inland Sea, Japan. In Interdisciplinary Studies on Environmental Chemistry—Marine Environmental Modelling and Analysis; Omori, K., Guo, X., Yoshie, N., Fujii, N., Handoh, I.C., Isobe, A., Tanabe, S., Eds.; Terrapub: Tokyo, Japan, 2011; pp. 39–49. [Google Scholar]
- Nishijima, W.; Umehara, A.; Sekito, S.; Okuda, T.; Nakai, S. Spatial and temporal distributions of Secchi depths and chlorophyll a concentrations in the Suo Nada of the Seto Inland Sea, Japan, exposed to anthropogenic nutrient loading. Sci. Total Environ. 2016, 571, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T. The Seto Inland Sea—Eutrophic or oligotrophic. Mar. Pollut. Bull. 2003, 47, 37–42. [Google Scholar] [CrossRef]
- Imai, I.; Yamaguchi, M.; Hori, Y. Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res. 2006, 1, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Yunus, A.P.; Dou, J.; Sravanthi, N. Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis. Remote Sens. Appl. Soc. Environ. 2015, 2, 11–25. [Google Scholar] [CrossRef]
- Noh, J.H.; Kim, W.; Son, S.H.; Ahn, J.; Park, Y. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI). Harmful Algae 2018, 73, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ghedira, H. Monitoring red tide with satellite imagery and numerical models: A case study in the Arabian Gulf. Mar. Pollut. Bull. 2014, 79, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Liu, R.M. Spatial analysis and eutrophication assessment for chlorophyll a in Taihu Lake. Environ. Monit. Assess. 2005, 101, 1–8. [Google Scholar]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Katlane, R.; Dupouy, C.; Zargouni, F. Chlorophyll and turbidity concentration as an index of water quality of the Gulf of Gabes from MODIS in 2009. Teledetection 2012, 11, 263–271. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Maritorena, S.; O’Brien, M.C.; Siegel, D.A.; Toole, D.; Menzies, D.; Smith, R.C.; Mueller, J.L.; Mitchell, B.G.; Mati, K.; et al. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3; NASA Technical Memorandum 2000-206892; Hooker, S.B., Firestone, E.R., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2000; Volume 11, p. 49.
- Moses, W.J.; Gitelson, A.A.; Perk, R.L.; Gurlin, D.; Rundquist, D.C.; Leavitt, B.C.; Barrow, T.M.; Brakhage, P. Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data. Water Res. 2012, 46, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A. The nature of the peak near 700 nm on the radiance spectra and its application for remote estimation of phytoplankton pigments in inland waters. Opt. Eng. Remote Sens. 1993, 1971, 170–179. [Google Scholar]
- Mittenzwey, K.H.; Ullrich, S.; Gitelson, A.A.; Kondratiev, K.Y. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnol. Oceanogr. 1992, 37, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Sakuno, Y.; Miño, E.R.; Nakai, S.; Mutsuda, H.; Okuda, T.; Nishijima, W.; Castro, R.; García, A.; Peña, R.; Rodríguez, M.; Depratt, G.C. Chlorophyll and suspended sediment mapping to the Caribbean Sea from rivers in the capital city of the Dominican Republic using ALOS AVNIR-2 data. Environ. Monit. Assess. 2014, 186, 4181–4193. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Rundquist, D. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote Sens. Environ. 1997, 62, 253–261. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophys. Res. Lett. 2003, 30, 1038. [Google Scholar] [CrossRef]
- Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares. In Multivariate Analysis; Krishnaiaah, P.R., Ed.; Academic Press: New York, NY, USA, 1996; pp. 391–420. [Google Scholar]
- Kawamura, K.; Watanabe, N.; Sakanoue, S.; Inoue, Y. Estimating forage biomass and quality in a mixed sown pasture based on partial least squares regression with waveband selection. Grassl. Sci. 2008, 54, 131–145. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Tedesco, L.P.; Li, S.; Duan, H.; Liu, D.; Hall, B.E.; Du, J.; Li, Z.; Shi, K.; et al. Remote estimation of chlorophyll-a in turbid inland waters: Three band model versus GA-PLS model. Remote Sens. Environ. 2013, 136, 342–357. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Tedesco, L.P.; Li, S.; Clercin, N.; Li, Z.C.; Shi, K. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least square (GA-PLS) modeling. Sci. Total Environ. 2012, 426, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Boggia, R.; Forina, M.; Fossa, P.; Mosti, L. Chemometric study and validation strategies in the structure-activity relationships of new class of cardiotonic agents. Quant. Struct. Act. Relatsh. 1997, 16, 201–213. [Google Scholar] [CrossRef]
- Wang, Z.; Kawamura, K.; Sakuno, Y.; Fan, X.; Gong, Z.; Lim, J. Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashihiroshima, Japan. Remote Sens. 2017, 9, 264. [Google Scholar] [CrossRef]
- Pawar, V.; Matsuda, O.; Yamamoto, T.; Hashimoto, T.; Rajendran, N. Spatial and temporal variations of sediment quality in and around fish cage farms: A case study of aquaculture in the Seto Inland Sea, Japan. Fish. Sci. 2001, 67, 619–627. [Google Scholar] [CrossRef]
- Pawar, V.; Matsuda, O.; Fujisaki, N. Relationship between feed input and sediment quality of the fish cage farms. Fish. Sci. 2002, 68, 894–903. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. 2012, 117, C01011. [Google Scholar] [CrossRef]
- Oyama, Y.; Matsushita, B.; Fukushima, T.; Matsushige, K.; Imai, A. Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura Japan) from Landsat TM data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 73–85. [Google Scholar] [CrossRef]
- Stumpf, R.P. Applications of Satellite Ocean Color Sensors for Monitoring and Predicting Harmful Algal Blooms. J. Hum. Ecol. Risk Assess. 2001, 7, 1363–1368. [Google Scholar] [CrossRef]
- Tomlinson, M.C.; Stumpf, R.P.; Ransibrahmanakul, V.; Truby, E.W.; Kirkpatrick, G.J.; Pederson, B.A.; Vargo, G.A.; Heil, C.A. Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico. Remote Sens. Environ. 2004, 91, 293–303. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Appl. Opt. 2006, 45, 3577–3592. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J.A. Simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Zimba, P.V.; Gitelson, A.A. Remote estimation of chlorophyll concentration inhypereutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 2006, 256, 272–286. [Google Scholar] [CrossRef]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Modelling of UPLC behaviour of acylcarnitines by quantitative structure–retention relationships. J. Pharm. Biomed. Anal. 2014, 96, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; He, Y. Chlorophyll assessment and sensitive wavelength exploration for tea (Camellia sinensis) based on reflectance spectral characteristics. HortScience 2008, 43, 1–6. [Google Scholar]
- Forina, M.; Casolino, C.; Almansa, E.M. The refinement of PLS models byiterative weighting of predictor variables and objects. Chemom. Intell. Lab. Syst. 2003, 68, 29–40. [Google Scholar] [CrossRef]
- Williams, P.C. Implementation of Near-Infrared Technology. In Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P.C., Norris, K., Eds.; Association of Cereal Chemists Inc.: Eagan, MN, USA, 2001; pp. 145–169. [Google Scholar]
- Chang, C.; Laird, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 2002, 167, 110–116. [Google Scholar] [CrossRef]
- Gowen, A.A.; Downey, G.; Esquerre, C.; O’Donnell, C.P. Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients. J. Chemom. 2011, 25, 375–381. [Google Scholar] [CrossRef]
- Yacobi, Y.Z.; Moses, W.J.; Kaganovsky, S.; Sulimani, B.; Leavitt, B.C.; Gitelson, A.A. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 2011, 45, 2428–2436. [Google Scholar] [CrossRef] [PubMed]
- Pérez, G.; Queimaliñ0s, C.; Balseiro, E.; Modenutti, B. Phytoplankton absorption spectra along the water column in deep North Patagonian Andean lakes (Argentina). Limnologica 2007, 37, 3–16. [Google Scholar] [CrossRef]
- Sasaki, H.; Tanaka, A.; Iwataki, M.; Touke, Y.; Siswanto, E.; Tan, C.K.; Ishizaka, J. Optical properties of the red tide in Isahaya Bay, south-western Japan: Influence of chlorophyll a concentration. J. Oceanogr. 2008, 64, 511–523. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Raitsos, D.E.; Dall’Olmo, G.; Zarokanellos, N.; Jackson, T.; Racault, M.F.; Hoteit, I. Regional ocean-colour chlorophyll algorithms for the Red Sea. Remote Sens. Environ. 2015, 165, 64–85. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Hu, C.M.; Muller-Karger, F.E.; Taylor, C.J.; Carder, K.L.; Kelble, K.; Johns, E.; Hell, C.A. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida Coastal Waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
Station ID | Latitude | Longitude | Depth (m) |
---|---|---|---|
1 | 34°19′44″ N | 133°15′24″ E | 29 |
2 | 34°20′31″ N | 133°19′26″ E | 17 |
3 | 34°21′51″ N | 133°22′10″ E | 10 |
4 | 34°24′37″ N | 133°24′44″ E | 10 |
5 | 34°22′01″ N | 133°24′58″ E | 21 |
6 | 34°23′38″ N | 133°27′58″ E | 17 |
Stations | N | Min | Max | Mean | SD | CV |
---|---|---|---|---|---|---|
1 | 12 | 0.83 | 4.2 | 2.73 | 0.95 | 0.35 |
2 | 12 | 1.06 | 6.72 | 3.82 | 2.15 | 0.56 |
3 | 12 | 1.72 | 7.84 | 4.5 | 1.71 | 0.38 |
4 | 12 | 2.31 | 14.33 | 8.13 | 4.54 | 0.56 |
5 | 6 | 1.75 | 5.46 | 3.92 | 1.25 | 0.32 |
6 | 5 | 1.2 | 8.74 | 4.41 | 2.84 | 0.64 |
Total | 59 | 0.83 | 14.33 | 4.67 | 3.11 | 0.67 |
Algorithms | Results Equation | Bands Combination (R), Coefficient a, and Intercept b | R2 | RMSE | Bias |
---|---|---|---|---|---|
OC2 | R = log10 () a = [0.2511 −2.0853 1.5035 −3.1747 0.3383] | 0.36 | 3.96 | −2.32 | |
OC3 | R = log10 () a = [0.2515 −2.3798 1.5823 −0.6372 −0.5692] | 0.32 | 3.95 | −2.71 | |
OC4 | R= log10 () a = [0.3272 −2.9940 2.7218 −1.2259 −0.5683] | 0.30 | 3.66 | −2.70 | |
Recalibrated OC2 | R = log10 () a = [−8942.6 −2053.3 −100.25 −3.8257 0.5738] | 0.39 | 2.65 | −0.46 | |
Recalibrated OC3 | R = log10 () a = [5204.7 −461.22 −41.033 −4.4207 0.5491] | 0.36 | 2.50 | −0.49 | |
Recalibrated OC4 | R = log10 () a = [−30610 −4098 −57.405 −0.1942 0.5933] | 0.35 | 2.53 | −0.49 | |
Three-band | + b | R = () × (736) a = 85.096 b = 7.371 | 0.46 | 2.28 | 3.2 × 10−6 |
NIR/red | + b | R = (705) × a = 0.0044 b = 0.8863 | 0.17 | 4.88 | 1.8 × 10−4 |
NIR/red tuning | + b | R = (693) × a = 66.633 b = −59.755 | 0.39 | 2.40 | 2.9 × 10−6 |
Dataset | N | Calibration | Validation | Number of Selected Wavebands | Percentage of Selected Wavebands (%) | ||||
---|---|---|---|---|---|---|---|---|---|
NLV | R2 | RMSE | R2 | RMSE | RPD | ||||
RL | 59 | 6 | 0.83 | 1.29 | 0.77 | 1.47 | 2.1 | 30 | 6.0 |
FDR | 59 | 4 | 0.83 | 1.28 | 0.78 | 1.45 | 2.13 | 10 | 2.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sakuno, Y.; Koike, K.; Ohara, S. Evaluation of Chlorophyll-a Estimation Approaches Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression and Several Traditional Algorithms from Field Hyperspectral Measurements in the Seto Inland Sea, Japan. Sensors 2018, 18, 2656. https://doi.org/10.3390/s18082656
Wang Z, Sakuno Y, Koike K, Ohara S. Evaluation of Chlorophyll-a Estimation Approaches Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression and Several Traditional Algorithms from Field Hyperspectral Measurements in the Seto Inland Sea, Japan. Sensors. 2018; 18(8):2656. https://doi.org/10.3390/s18082656
Chicago/Turabian StyleWang, Zuomin, Yuji Sakuno, Kazuhiko Koike, and Shizuka Ohara. 2018. "Evaluation of Chlorophyll-a Estimation Approaches Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression and Several Traditional Algorithms from Field Hyperspectral Measurements in the Seto Inland Sea, Japan" Sensors 18, no. 8: 2656. https://doi.org/10.3390/s18082656
APA StyleWang, Z., Sakuno, Y., Koike, K., & Ohara, S. (2018). Evaluation of Chlorophyll-a Estimation Approaches Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression and Several Traditional Algorithms from Field Hyperspectral Measurements in the Seto Inland Sea, Japan. Sensors, 18(8), 2656. https://doi.org/10.3390/s18082656