Abstract
This study aims to study the distribution of contaminants in rivers that flow into the Caribbean Sea using chlorophyll-a (Chl-a) and suspended sediment (SS) as markers and ALOS AVNIR-2 satellite sensor data. The Haina River (HN) and Ozama and Isabela Rivers (OZ-IS) that flow through the city of Santo Domingo, the capital of the Dominican Republic, were chosen. First, in situ spectral reflectance/Chl-a and SS datasets obtained from these rivers were acquired in March 2011 (case A: with no rain influence) and June 2011 (case B: with rain influence), and the estimation algorithm of Chl-a and SS using AVNIR-2 data was developed from the datasets. Moreover, the developed algorithm was applied to AVNIR-2 data in November 2010 for case A and August 2010 for case B. Results revealed that for Chl-a and SS estimations under cases A and B conditions, the reflectance ratio of AVNIR-2 band 4 and band 3 (AV4/AV3) and the reflectance of AVNIR-2 band 4 (AV4) were effective. The Chl-a and SS mapping results obtained using AVNIR-2 data corresponded with the field survey results. Finally, an outline of the distribution of contaminants at the mouth of the river that flows into the Caribbean Sea was obtained for both rivers in cases A and B.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
APHA, WWA, & WEF (1998). Standard methods for the examination of water and wastewater, 5–13.
Burke, L., Kura, Y., Kassem, K., Revenga, C., Spalding, M., McAllister, D., & Caddy, J. (2001). Pilot analysis of global ecosystems: coastal ecosystems. Washington, DC: World Resources Institute.
Carpenter, D., & Carpenter, S. (1983). Modeling inland water quality using Landsat data. Remote Sensing of Environment, 13, 345–352.
Dall'Olmo, G., Gitelson, A. A., Rundquist, D. C., Leavitt, B., Barrow, T., & Holz, J. C. (2005). Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment, 96(2), 176–187.
De La Fuente, S. (1976). Geografía Dominicana (pp. 235–236). Dominican Republic: Editora Colegial Quisqueyana, Santo Domingo.
Dekker, A., Vos, R., & Peters, S. (2001). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268, 197–214.
Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental Monitoring and Assessment, 129, 295–308.
Esaias, W. E., Abbott, M. R., Barton, I., Brown, O. B., Campbell, J. W., Carder, K. L., Clark, D. K., Evans, R. H., Hoge, F. E., & Gordon, H. R. (1998). An overview of MODIS capabilities for ocean science observations. Geoscience and Remote Sensing, IEEE Transactions, 36(4), 1250–1265.
Gitelson, A. A., Schalles, J. F., & Hladik, C. M. (2007). Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment, 109, 464–472.
Gurlin, D., Gitelson, A. A., & Moses, W. J. (2011). Remote estimation of chl-a concentration in turbid productive waters? Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115, 3479–3490.
Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics, 12, 555–563.
Han, L. (1997). Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. Photogrammetric Engineering and Remote sensing, 63, 701–705.
Kaewmanee, M., Choomnoommanee, T. & Fraisse, R. (2007). Thailand earth observation system: mission and products. Revue française de photogrammétrie et de télédétection, 12–18.
Kaul, B., & Mukerjee, H. (1999). Elevated blood lead and erythrocyte protoporphyrin levels of children near a battery-recycling plant in Haina, Dominican Republic. International Journal of Occupational and Environmental Health, 5(4), 307–312.
Lathrop, R. G., Lillesand, T. M., & Yandell, B. S. (1991). Testing the utility of simple multi-date thematic mapper calibration algorithms for monitoring turbid inland waters. International Journal of Remote Sensing, 12, 2045–2063.
Letelier, R. M., & Abbott, M. R. (1996). An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing of Environment, 58, 215–223.
MacFarlane, N., & Robinson, I. (1984). Atmospheric correction of Landsat MSS data for a multidate suspended sediment algorithm. International Journal of Remote Sensing, 5, 561–576.
Mertes, L. A. K., Smith, M. O., & Adams, J. B. (1993). Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images. Remote Sensing of Environment, 43, 281–301.
Miño, E. R. A., Sakuno, Y., Nakai, S., Mutsuda, H., Okuda, T., Nishijima, W., Castro, R., Garcia, A., Peña, R., Rodriguez, M., & Depratt, C. G. (2011). Pollution loading to the Caribbean Sea from rivers in the capital city of The Dominican Republic. Proceedings of Japan Society of Civil Engineers, 67, 41–45.
Murakami, H., Tadono, T., & Shimada, M. (2007). Radiometric cross calibration of AVNIR-2 and MODIS using directional functions of top-of-atmosphere reflectance. Journal of the Remote Sensing Society of Japan, 27, 354–362 (in Japanese with English abstract).
Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2013). Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sensing of Environment, 130, 254–265.
Prieur, L., & Sathyendranath, S. (1981). An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnology and Oceanography, 26(4), 671–689.
Ragadera, R., Cruz, A. & Delgado, G. (2001). Characterization of the planktonic communities of the Santo Domingo coast, Dominican Republic, and their relationship with major polluting sources. Revista cubana de investigaciones pesqueras
Rawlins, B., Ferguson, A., Chilton, P., Arthurton, R., Rees, J., & Baldock, J. (1998). Review of agricultural pollution in the Caribbean with particular emphasis on small island developing states. Marine Pollution Bulletin, 36, 658–668.
Sakuno, Y., Kanno, A., & Koibuchi, Y. (2010). Simultaneous Estimation of SS and Chlorophyll in shallow water through remote sensing. Journal of Japan Society of Civil Engineers, B2(Coastal Engineering), 66, 1026–1030. in Japanese with English abstract.
Shahidul, I. M., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin, 48, 624–649.
Taylor, E. B. (2009). From el campo to el barrio: Memory and social imaginaries in Santo Domingo. Identities: Global Studies in Culture and Power, 16, 157–178.
Tebbs, E., Remedios, J., & Harper, D. (2013). Remote sensing of chlorophyll- a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment, 135, 92–106.
Thiemann, S., & Kaufmann, H. (2002). Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany. Remote Sensing of Environment, 81, 228–237.
Villasol, A., Alepuz, M. & Beltrán, J. (1998). Integrated management of bays and coastal zones in the wider Caribbean region: Facts and needs. Proceeding of ITMEMS 1998, 192–205.
Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data. Science of the Total Environment, 328, 195–206.
Wang, J., Lu, X., & Zhou, Y. (2007). Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+. Chinese Science Bulletin, 52(2), 273–280.
Wang, J. J., Lu, X. X., Liew, S. C., & Zhou, Y. (2009). Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: an example from the Yangtze River, China. Earth Surface Processes and Landforms, 34, 1082–1092.
Yacobi, Y. Z., Moses, W. J., Kaganovsky, S., Sulimani, B., Leavitt, B. C., & Gitelson, A. A. (2011). NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Research, 45, 2428–2436.
Acknowledgment
We would like to thank to Mr. Peter Szabo for collaboration on the survey. We would also like to thank the staff of the Environmental Department of the Municipality of Santo Domingo East and the Institute of Chemistry of UASD for their collaboration during the analysis of the samples. This study was supported in part by JSPS KAKENHI (23404001 and 20332801).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sakuno, Y., Miño, E.R., Nakai, S. et al. Chlorophyll and suspended sediment mapping to the Caribbean Sea from rivers in the capital city of the Dominican Republic using ALOS AVNIR-2 data. Environ Monit Assess 186, 4181–4193 (2014). https://doi.org/10.1007/s10661-014-3689-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10661-014-3689-6