A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor
<p>Aluminum as the control point in the field experiment: (<b>a</b>) Tree whose vigor strength is good; (<b>b</b>) Tree whose vigor strength is bad; (<b>c</b>) The usage of aluminum tape.</p> "> Figure 2
<p>Cultivation condition of orange trees.</p> "> Figure 3
<p>Sampled leaves used in this study.</p> "> Figure 4
<p>Sampled leaves: (<b>a</b>) Leaves of strong tree; (<b>b</b>) Leaves of weak tree.</p> "> Figure 5
<p>Fluorescent sensor used and measuring area of the leaf: (<b>a</b>) Fluorescent sensor used in this study; (<b>b</b>) Measurement areas in each leaf.</p> "> Figure 6
<p>Special measurement station for leaf: (<b>a</b>) Titanium coin used instead of iron; (<b>b</b>) special measurement station for the leaves; (<b>c</b>) hXRF analyzer used in this study.</p> "> Figure 7
<p>Structure of the WSN in Tomi-no-oka vineyard: (<b>a</b>) Installation points of sensors; (<b>b</b>) System configuration of WSN.</p> "> Figure 8
<p>The information about SPPNet protocol used in this study.</p> "> Figure 9
<p>The structure of the WSN used in this study.</p> "> Figure 10
<p>Design of agricultural IoT as a service for farmers</p> "> Figure 11
<p>ER chart of database structure.</p> "> Figure 12
<p>Primary index as a list displayed in web service.</p> "> Figure 13
<p>Data verification about solar duration: (<b>a</b>) The data acquired in January; (<b>b</b>) The data acquired in July.</p> "> Figure 14
<p>Secondary index displayed in web application. Since this application is written in Japanese, English annotation is mentioned with red letter.</p> "> Figure 15
<p>Polygonal line graph shown in this web application.</p> "> Figure 16
<p>Transformation of leaves: (<b>a</b>) Transformed data; (<b>b</b>) Average of bundle; (<b>c</b>) Inverse transformation.</p> "> Figure 17
<p>Mapping of the leaf to the template: (<b>a</b>) Sample of the mapping; (<b>b</b>) apply this mapping method to real leaf.</p> "> Figure 18
<p>Thermal images of the leaves: (<b>a</b>) Strong leaf; (<b>b</b>) Weak leaf; (<b>c</b>) Temperature difference between strong leaf and weak one.</p> "> Figure 19
<p>Comparison of temperature distribution between weak leaf and strong one.</p> "> Figure 20
<p>Comparison of each index of various leaves: (<b>a</b>) The rusult of chlorophyll; (<b>b</b>) The result of flavonol; (<b>c</b>) The result of anthocyanin; (<b>d</b>) The result of NBI.</p> "> Figure 21
<p>Correlation between ANTH and NBI: (<b>a</b>) Leaves of strong vigor; (<b>b</b>) Leaves of weak vigor.</p> "> Figure 22
<p>Normalised fluorescence X-ray spectroscopic data of strong leaf.</p> ">
Abstract
:1. Introduction
2. Object Fields and Methods
2.1. Object Fields
2.2. Growing Environmental Measurement by Using WSN
2.3. Diagnosis of Fruit Tree Vigor Using Optical Sensing
2.3.1. Thermal Image Acquisition of Mandarin Orange Leaves
2.3.2. Vigor Measurement of Mandarin Orange Leaves by Fluorescence and Fluorescence X-ray Methods
3. Results and Discussions
3.1. Growing Environment Measurement by the WSN
3.1.1. Growing Environment Data Acquired by the WSN
3.1.2. IoT service for Farmers
3.1.3. Vigor Sensing of Mandarin Orange Leaves Using Thermal Image
3.1.4. Vigor Measurement of Mandarin Orange Leaves by Using Fluorescent Method
3.1.5. Vigor Measurement of Mandarin Orange Leaves Using Fluorescent X-ray Method
3.2. Future Prospects of the Cultivation Indices and Tree Vigor Sensing
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rasyid, M.U.H.A.; Nadhori, I.U.; Sudarsono, A.; Alnovinda, Y.T. Pollution Monitoring System Using Gas Sensor Based on Wireless Sensor Network. Int. J. Eng. Technol. Innov. 2016, 6, 79–91. [Google Scholar]
- Togami, T.; Yamamoto, K.; Hashimoto, A.; Watanabe, N.; Takata, K.; Nagai, H.; Kameoka, T. A wireless sensor network in a vineyard for smart viticultural management. In Proceedings of the 2011 SICE Annual Conference, Tokyo, Japan, 13–18 September 2011. [Google Scholar]
- Togami, T.; Hashimoto, A.; Ito, R.; Kameoka, T. Agro-Environmental Monitoring Using A Wireless Sensor Network to Support Production of High Quality Mandarin Oranges. Agric. Inf. Res. 2011, 20, 110–121. [Google Scholar] [CrossRef]
- Kameoka, T.; Hashimoto, A. A Sensing Approach to Fruit-Growing. In Wireless Sensor Networks and Ecological Monitoring; Subhas, C., Mukhopadhyay, S.C., Jiang, J.-A., Eds.; Smart Sensors, Measurement and Instrumentation; Springer: Berlin/Heidelberg, Germany, 2013; Volume 3, pp. 217–246. [Google Scholar]
- Ohtani, Y.; Togami, T.; Kimura, Y.; Hashimoto, A.; Kameoka, T. Thermal image utilization on the vigor diagnosis of mandarin orange tree. In Proceedings of the 2010 SICE Annual Conference, Taipei, Taiwan, 18–21 August 2010. [Google Scholar]
- Vadivambal, R.; Jayas, D.S. Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food Bioprocess Technol. 2011, 4, 186–199. [Google Scholar] [CrossRef]
- Hashimoto, A.; Suehara, K.; Kameoka, T. Applications of Infrared Spectroscopic Techniques to Quality Evaluation in Agriculture and Food Process. In Proceedings of the 13th International Workshop on Advanced Infrared Technology & Applications, Pisa, Italy, 29 September–2 October 2015. [Google Scholar]
- Kameoka, T.; Hashimoto, A. Effective Application of ICT in Food and Agricultural Sector-Optical Sensing is Mainly Described—. IEICE Trans. Commun. 2015, 98, 1741–1748. [Google Scholar] [CrossRef]
- Jayaraman, P.; Yavari, A.; Georgakopoulos, D.; Morshed, A.; Zaslavsky, A. Internet of things platform for smart farming: Experiences and lessons learnt. Sensors 2016, 16, 1884. [Google Scholar] [CrossRef] [PubMed]
- Irmak, S.; Payero, J.O.; Eisenhauer, D.O.; Kranz, W.L.; Martin, D.L.; Zoubek, G.L.; Rees, J.M.; van de Walle, B.; Christiansen, A.P.; Leininger, D. Watermark Granular Matrix Sensor to Measure Soil Matric Potential for Irrigation Management; University of Nebraska–Lincoln: Lincoln, NE, USA, 2006; pp. 1–8. [Google Scholar]
- Gladstones, J.S. Wine, Terroir and Climate Change; Wakefield Press: Adelaide, Australia, 2015; pp. 5–26. [Google Scholar]
- Vivar, M.; Fuentes, M.; Norton, M.; Makrides, G.; De Bustamante, I. Estimation of sunshine duration from the global irradiance measured by a photovoltaic silicon solar cell. Renew. Sustain. Energy Rev. 2014, 36, 26–33. [Google Scholar] [CrossRef]
- Motonaga, Y.; Kondou, H.; Kameoka, T.; Hashimoto, A. Determination of the Standard Shape and Color of Agricultural Products. In Proceedings of the 4th International Conference on Quality Control by Artificial Vision (QCAV’98), Kagawa, Japan, 10–12 November 1998; pp. 29–34. [Google Scholar]
- Agati, G.; Tuccio, L.; Kusznierewicz, B.; Chmiel, T.; Bartoszek, A.; Kowalski, A.; Grzegorzewska, M.; Kosson, R.; Kaniszewski, S. Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage (Brassica oleracea L. var. capitata subvar. alba) Grown under Different Nitrogen Regimens. J. Agric. Food Chem. 2016, 64, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Cerovic, Z.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Le Moigne, M. Nondestructive Diagnostic Test for Nitrogen Nutrition of Grapevine (Vitis vinifera L.) Based on Dualex Leaf-Clip Measurements in the Field. J. Agric. Food Chem. 2015, 63, 3669–3680. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, A.; Niwa, T.; Yamamura, T.; Suehara, K.; Kanou, M.; Kameoka, T.; Kumon, T.; Hosoi, K. X-Ray Fluorescent and Mid-Infrared Spectroscopic Analysis of Tomato Leaves. In Proceedings of the 2006 SICE-ICASE International Joint Conference, Busan, Korea, 18–21 October 2006; pp. 3359–3562. [Google Scholar]
- De Haij, M.; Wauben, W.F. Investigations into the improvement of automated precipitation type observations at KNMI. In Proceedings of the WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation 2010, Helsinki, Finland, 2–8 September 2010. [Google Scholar]
- Honda, K.; Chinnachodteeranun, R.; Witayangkurn, A. Sensor Observation Service for Connecting Heterogeneous Field Sensor Platforms to Applications. In Proceedings of the 2016 WCCA-AFITA, Suncheon, Korea, 21–24 June 2016. [Google Scholar]
- Chinnachodteeranun, R.; Honda, K. Sensor Observation Service API for Providing Gridded Climate Data to Agricultural Applications. Future Int. 2016, 8, 40–47. [Google Scholar] [CrossRef]
- Kameoka, S.; Hashimoto, A.; Ito, R.; Kameoka, T. Wireless Sensor Network System for Fruit-Growing Environment at the Field. In Proceedings of the 2016 WCCA-AFITA, Suncheon, Korea, 21–24 June 2016. [Google Scholar]
- Kameoka, S.; Isoda, S.; Hashimoto, A.; Ito, R.; Miyamoto, S.; Wada, G.; Watanabe, N.; Kameoka, T. Deployment of a Wireless Sensor Network for the Drowing Environment Information Acquisition at the Field. Agric. Inf. Res. 2017, 26, 11–25. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates, Inc.: Sunderland, UK, 2010; p. 114. [Google Scholar]
- Kameoka, T.; Nishioka, K.; Motonaga, Y.; Kimura, Y.; Hashimoto, A.; Watanabe, N. Smart sensing in a vineyard for advancedviticultural management. In Proceedings of the 2014 International Workshop on Web Intelligence and Smart Sensing, Saint Etienne, France, 1–2 September 2014; pp. 1–8. [Google Scholar]
- Xiu, J.; Tanida, W.; Kimura, Y.; Hashimoto, A.; Kameoka, T. Quantitative analysis of squeezed liquid of sorghum by using FTIR spectroscopy. In Proceedings of the 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hangzhou, China, 28–30 July 2015; pp. 100–103. [Google Scholar]
- Tanida, W.; Hashimoto, A.; Ito, R.; Ozaki, S.; Kameoka, S.; Kameoka, T. Measurement of Sugar in Phloem Sap by Using IR Spectroscopy. In Proceedings of the 2016 WCCA-AFITA, Suncheon, Korea, 21–24 June 2016. [Google Scholar]
Product Name | Description | Sensor Interface | RF | Power | Battery Life w/o Sunlight | Waterproof |
---|---|---|---|---|---|---|
SP-0020 | Used for sensing analog sensors; Prototyping Model for PoC | Arduino UNO, which has analog (0–5 V) inputs | SPP’s original 920 MHz RF module | Solar Panel (2.15 W) Rechargeable batteries (9600 mAh) | <3 days | IP65 |
SP-0030 | Used for sensing RS485 sensors; Prototyping Model for PoC | SPP’s original RS485 interface board | Solar Panel (2.15 W) Rechargeable batteries (9600 mAh) | <3 days | IP65 | |
SP-0050 | Used for sensing analog, digital sensors; SPP’s Commercial Model, developed based on SP-0020 | SPP’s original board which has multiple interfaces such as analog (0–5 V, 4–20 mA), digital inputs | Solar Panel (1.4 W) Rechargeable batteries (3200 mAh) | <10 days *Low power mode | IP66 | |
GW-Z01 | Used for connecting WSN to the internet; SPP’s Commercial Model | N/A | AC Adaptor 5 V/1.6 A | N/A | N/A Deployed in Waterproof Box |
Sensor Name | Model Number | Note |
---|---|---|
Weather station | WS700-UMB |
|
Soil moisture sensor | WD-3-WET-SE |
|
Sensor Name | Physical Quantity | UOM |
---|---|---|
air_temperature | Temperature | Cel |
air_pressure | Air pressure | hPa |
wind_speed | Wind speed | m/s |
10 min_maximum_wind_speed | Wind speed | m/s |
10 min_minimum_wind_speed | Wind speed | m/s |
10 min_average_wind_speed | Wind speed | m/s |
wind_direction | Aind direction | deg |
1 min_precipitation | Precipitation | mm |
solar_irradiance | Global radiation | W/m2 |
10 min_maximum_solar_irradiance | Global radiation | W/m2 |
10 min_minimum_solar_irradiance | Global radiation | W/m2 |
10 min_average_solar_irradiance | Global radiation | W/m2 |
relative_humidity | humidity | % |
Metal | Average Content (%, ppm) | Sample Number | Evaluation | Metal | Average Content (%, ppm) | Sample Number | Evaluation |
---|---|---|---|---|---|---|---|
LE (%) | 73.7 | 30 | LE (%) | 71.9 | 30 | ||
Ti (%) | 20.3 | 30 | Ti (%) | 22.4 | 30 | ||
Ca (%) | 3.30 | 29 | Optimum | Ca (%) | 3.19 | 30 | Optimum |
K (%) | 1.33 | 29 | Optimum | K (%) | 1.01 | 30 | Optimum |
S (%) | 0.230 | 29 | S (%) | 0.201 | 30 | ||
P (%) | 0.112 | 26 | A little deficiency | P (%) | 0.0952 | 30 | Deficiency |
Si (ppm) | 855 | 29 | Si (ppm) | 764 | 30 | ||
Mn (ppm) | 380 | 30 | Excess | Mn (ppm) | 375 | 30 | Excess |
Fe (ppm) | 138 | 30 | Optimum | Fe (ppm) | 155 | 30 | A little excess |
Cu (ppm) | 87.2 | 30 | A little excess | Cu (ppm) | 72.0 | 19 | A little excess |
Zn (ppm) | 49.5 | 14 | Optimum | Zn (ppm) | 37.4 | 8 | Optimum |
Mo (ppm) | 22.3 | 22 | Excess | Mo (ppm) | 23.5 | 19 | Excess |
Ni (ppm) | 20.2 | 6 | A little excess | Ni (ppm) | 42.7 | 4 | Excess |
Mg | 0 | Mg | 0 | ||||
Co | 0 | Co | 0 |
Crop Name | Content | Concentration in Dry Matter (%) | ||||||||||
Nitrogen (N) | Phosphorus (P) | Potassium (K) | Calcium (Ca) | Magnesium (Mg) | ||||||||
mandarin orange | deficiency | under 2.3 | under 0.10 | under 0.7 | under 2.0 | under 0.10 | ||||||
optimum | 2.9~3.4 | 0.16~0.20 | 1.0~1.6 | 3.0~6.0 | 0.30~0.60 | |||||||
excess | over 4.0 | - | over 1.8 | over 7.0 | - | |||||||
Crop Name | Content | Concentration in Dry Matter (ppm) | ||||||||||
Boron (B) | Manganese (Mn) | Iron (Fe) | Zinc (Zn) | Copper (Cu) | Molybdenum (Mo) | Nickel (Ni) | Cobalt (Co) | |||||
mandarin orange | deficiency | under 30 | under 30 | under 35 | under 10 | under 4 | under 0.05 | - | - | |||
optimum | 30~100 | 30~100 | 50~150 | 30~100 | 10~50 | 0.2~3.0 | 2.0~15 | 5~20 | ||||
excess | over 170 | over 150 | over 250 | over 200 | over 150 | - | over 25 | over 30 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kameoka, S.; Isoda, S.; Hashimoto, A.; Ito, R.; Miyamoto, S.; Wada, G.; Watanabe, N.; Yamakami, T.; Suzuki, K.; Kameoka, T. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor. Sensors 2017, 17, 966. https://doi.org/10.3390/s17050966
Kameoka S, Isoda S, Hashimoto A, Ito R, Miyamoto S, Wada G, Watanabe N, Yamakami T, Suzuki K, Kameoka T. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor. Sensors. 2017; 17(5):966. https://doi.org/10.3390/s17050966
Chicago/Turabian StyleKameoka, Shinichi, Shuhei Isoda, Atsushi Hashimoto, Ryoei Ito, Satoru Miyamoto, Genki Wada, Naoki Watanabe, Takashi Yamakami, Ken Suzuki, and Takaharu Kameoka. 2017. "A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor" Sensors 17, no. 5: 966. https://doi.org/10.3390/s17050966